A simple proof of the continuity of the higher order Riesz transforms with respect to the gaussian measure
Liliana Forzani; Roberto Scotto; Wilfredo Urbina
Séminaire de probabilités de Strasbourg (2001)
- Volume: 35, page 162-166
Access Full Article
topHow to cite
topForzani, Liliana, Scotto, Roberto, and Urbina, Wilfredo. "A simple proof of the $L^p$ continuity of the higher order Riesz transforms with respect to the gaussian measure $\gamma _d$." Séminaire de probabilités de Strasbourg 35 (2001): 162-166. <http://eudml.org/doc/114058>.
@article{Forzani2001,
author = {Forzani, Liliana, Scotto, Roberto, Urbina, Wilfredo},
journal = {Séminaire de probabilités de Strasbourg},
keywords = {Riesz transform of higher order; Gauss measure; boundedness; integral operators; second-order differential operators; Nelson inequalities; hypercontractivity semigroups},
language = {eng},
pages = {162-166},
publisher = {Springer - Lecture Notes in Mathematics},
title = {A simple proof of the $L^p$ continuity of the higher order Riesz transforms with respect to the gaussian measure $\gamma _d$},
url = {http://eudml.org/doc/114058},
volume = {35},
year = {2001},
}
TY - JOUR
AU - Forzani, Liliana
AU - Scotto, Roberto
AU - Urbina, Wilfredo
TI - A simple proof of the $L^p$ continuity of the higher order Riesz transforms with respect to the gaussian measure $\gamma _d$
JO - Séminaire de probabilités de Strasbourg
PY - 2001
PB - Springer - Lecture Notes in Mathematics
VL - 35
SP - 162
EP - 166
LA - eng
KW - Riesz transform of higher order; Gauss measure; boundedness; integral operators; second-order differential operators; Nelson inequalities; hypercontractivity semigroups
UR - http://eudml.org/doc/114058
ER -
References
top- 1. Gundy, R.Sur les transformations de Riesz pour le semigroupe d'Ornstein-Uhlenbeck, C.R. Acad. Sci.303 (Série I) (1986), 967-970. Zbl0606.60063MR877182
- 2. Gutiérrez, C.On the Riesz transforms for the Gaussian measure. J. Fourier Anal.120 (1) (1994) 107-134. Zbl0807.46030MR1262249
- 3. Gutiérrez, C., Segovia C. & J.L. Torrea. On higher Riesz transforms for the Gaussian measure. J. Fourier Anal. Appl. Vol 2 #6 (1996) 583-596. Zbl0893.42007
- 4. Meyer, P.A.Transformations de Riesz pour les lois gaussiennes. Lectures Notes in Math.1059 (1984) Springer-Verlag.Berlin. 179-193 . Zbl0543.60078MR770960
- 5. Pisier, G.Riesz transform: a simpler analytic proof of P. A. Meyer inequality. Lectures Notes in Math1321. Springer-Verlag (1988) 485-501. Zbl0645.60061MR960544
- 6. Urbina, W.Singular Integrals with respect to the Gaussian measure . Scuola Normale Superiore di Pisa. Classe di Science. Serie IV Vol XVIII, 4 (1990) 531-567. Zbl0737.42018MR1093708
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.