A simple proof of the L p continuity of the higher order Riesz transforms with respect to the gaussian measure γ d

Liliana Forzani; Roberto Scotto; Wilfredo Urbina

Séminaire de probabilités de Strasbourg (2001)

  • Volume: 35, page 162-166

How to cite

top

Forzani, Liliana, Scotto, Roberto, and Urbina, Wilfredo. "A simple proof of the $L^p$ continuity of the higher order Riesz transforms with respect to the gaussian measure $\gamma _d$." Séminaire de probabilités de Strasbourg 35 (2001): 162-166. <http://eudml.org/doc/114058>.

@article{Forzani2001,
author = {Forzani, Liliana, Scotto, Roberto, Urbina, Wilfredo},
journal = {Séminaire de probabilités de Strasbourg},
keywords = {Riesz transform of higher order; Gauss measure; boundedness; integral operators; second-order differential operators; Nelson inequalities; hypercontractivity semigroups},
language = {eng},
pages = {162-166},
publisher = {Springer - Lecture Notes in Mathematics},
title = {A simple proof of the $L^p$ continuity of the higher order Riesz transforms with respect to the gaussian measure $\gamma _d$},
url = {http://eudml.org/doc/114058},
volume = {35},
year = {2001},
}

TY - JOUR
AU - Forzani, Liliana
AU - Scotto, Roberto
AU - Urbina, Wilfredo
TI - A simple proof of the $L^p$ continuity of the higher order Riesz transforms with respect to the gaussian measure $\gamma _d$
JO - Séminaire de probabilités de Strasbourg
PY - 2001
PB - Springer - Lecture Notes in Mathematics
VL - 35
SP - 162
EP - 166
LA - eng
KW - Riesz transform of higher order; Gauss measure; boundedness; integral operators; second-order differential operators; Nelson inequalities; hypercontractivity semigroups
UR - http://eudml.org/doc/114058
ER -

References

top
  1. 1. Gundy, R.Sur les transformations de Riesz pour le semigroupe d'Ornstein-Uhlenbeck, C.R. Acad. Sci.303 (Série I) (1986), 967-970. Zbl0606.60063MR877182
  2. 2. Gutiérrez, C.On the Riesz transforms for the Gaussian measure. J. Fourier Anal.120 (1) (1994) 107-134. Zbl0807.46030MR1262249
  3. 3. Gutiérrez, C., Segovia C. & J.L. Torrea. On higher Riesz transforms for the Gaussian measure. J. Fourier Anal. Appl. Vol 2 #6 (1996) 583-596. Zbl0893.42007
  4. 4. Meyer, P.A.Transformations de Riesz pour les lois gaussiennes. Lectures Notes in Math.1059 (1984) Springer-Verlag.Berlin. 179-193 . Zbl0543.60078MR770960
  5. 5. Pisier, G.Riesz transform: a simpler analytic proof of P. A. Meyer inequality. Lectures Notes in Math1321. Springer-Verlag (1988) 485-501. Zbl0645.60061MR960544
  6. 6. Urbina, W.Singular Integrals with respect to the Gaussian measure . Scuola Normale Superiore di Pisa. Classe di Science. Serie IV Vol XVIII, 4 (1990) 531-567. Zbl0737.42018MR1093708

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.