Coalescence of skew brownian motions

Martin T. Barlow; Krzysztof Burdzy; Haya Kaspi; Avi Mandelbaum

Séminaire de probabilités de Strasbourg (2001)

  • Volume: 35, page 202-205

How to cite

top

Barlow, Martin T., et al. "Coalescence of skew brownian motions." Séminaire de probabilités de Strasbourg 35 (2001): 202-205. <http://eudml.org/doc/114062>.

@article{Barlow2001,
author = {Barlow, Martin T., Burdzy, Krzysztof, Kaspi, Haya, Mandelbaum, Avi},
journal = {Séminaire de probabilités de Strasbourg},
keywords = {perturbed Brownian motion; almost sure coalescence; variably skewed Brownian motion},
language = {eng},
pages = {202-205},
publisher = {Springer - Lecture Notes in Mathematics},
title = {Coalescence of skew brownian motions},
url = {http://eudml.org/doc/114062},
volume = {35},
year = {2001},
}

TY - JOUR
AU - Barlow, Martin T.
AU - Burdzy, Krzysztof
AU - Kaspi, Haya
AU - Mandelbaum, Avi
TI - Coalescence of skew brownian motions
JO - Séminaire de probabilités de Strasbourg
PY - 2001
PB - Springer - Lecture Notes in Mathematics
VL - 35
SP - 202
EP - 205
LA - eng
KW - perturbed Brownian motion; almost sure coalescence; variably skewed Brownian motion
UR - http://eudml.org/doc/114062
ER -

References

top
  1. [1] Barlow, M., Burdzy, K., Kaspi, H. and Mandelbaum, A. (1999), Variably skewed Brownian motion (preprint) Zbl0949.60090MR1752008
  2. [2] Burdzy, K. and Chen, Z.-Q. (1999) Local time flow related to skew Brownian motion (preprint) MR1880238
  3. [3] Chaumont, L. and Doney, R.A. (1999) Pathwise uniqueness for perturbed versions of Brownian motion and reflected Brownian motion. Probab. Theory Related Fields113, 519-534. Zbl0945.60082MR1717529
  4. [4] Doney, R.A.Some calculations for perturbed Brownian motion. Séminaire de Probabilités, XXXII, 231-236, Lecture Notes in Math., 1686, Springer, Berlin, 1998. Zbl0911.60067MR1655296
  5. [5] Doney, R.A., Warren, J. and Yor, M.Perturbed Bessel processes. Séminaire de Probabilités, XXXII, 237-249, Lecture Notes in Math., 1686, Springer, Berlin, 1998. Zbl0924.60039MR1655297
  6. [6] Harrison, J.M.and Shepp, L.A. (1981), On skew Brownian motion, Ann. Probab.9 (2), 309-313. Zbl0462.60076MR606993
  7. [7] Itô, K. and McKean, H.P. (1965), Diffusion Processes and Their Sample Paths, Springer, New York. Zbl0127.09503
  8. [8] Karatzas, I. and Shreve, S.E. (1991), Brownian Motion and Stochastic Calculus, 2nd Edition, Springer Verlag, New York. Zbl0734.60060MR1121940
  9. [9] Perman, M. and Werner, W. (1997) Perturbed Brownian motions. Probab. Theory Related Fields108, 357-383. Zbl0884.60082MR1465164
  10. [10] Walsh, J.B. (1978), A diffusion with discontinuous local time, Temps LocauxAsterisque, 52-53, 37-45. 
  11. [11] Werner, W.Some remarks on perturbed reflecting Brownian motion. Séminaire de Probabilités, XXIX, 37-43, Lecture Notes in Math., 1613, Springer, Berlin, 1995. Zbl0835.60072MR1459447

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.