Some calculations for perturbed brownian motion
Séminaire de probabilités de Strasbourg (1998)
- Volume: 32, page 231-236
Access Full Article
topHow to cite
topDoney, R.A.. "Some calculations for perturbed brownian motion." Séminaire de probabilités de Strasbourg 32 (1998): 231-236. <http://eudml.org/doc/113986>.
@article{Doney1998,
author = {Doney, R.A.},
journal = {Séminaire de probabilités de Strasbourg},
keywords = {perturbed Brownian motion; Ray-Knight theorem; two-side exit problem},
language = {eng},
pages = {231-236},
publisher = {Springer - Lecture Notes in Mathematics},
title = {Some calculations for perturbed brownian motion},
url = {http://eudml.org/doc/113986},
volume = {32},
year = {1998},
}
TY - JOUR
AU - Doney, R.A.
TI - Some calculations for perturbed brownian motion
JO - Séminaire de probabilités de Strasbourg
PY - 1998
PB - Springer - Lecture Notes in Mathematics
VL - 32
SP - 231
EP - 236
LA - eng
KW - perturbed Brownian motion; Ray-Knight theorem; two-side exit problem
UR - http://eudml.org/doc/113986
ER -
References
top- [1] J. Azéma and M. Yor. Une solution simple au problème de Skorokhod. Sém. de Prob. XIII, Lecture notes in Mathematics, 721, 90-115, Springer, 1978. Zbl0414.60055MR544782
- [2] P. Carmona, F. Petit, and M. Yor. Some extensions of the arc-sine law as (partial) consequences of the scaling property of Brownian motion. Prob. Th. and Rel. Fields, 100, 1-29, 1994. Zbl0808.60066MR1292188
- [3] P. Carmona, F. Petit, and M. Yor. Beta variables as the time spent in [0, ∞) by certain perturbed Brownian motions. J.London Math. Soc.,(to appear,1997). Zbl0924.60067MR1670130
- [4] L. Chaumont and R.A. Doney. Applications of a path decomposition for doubly perturbed Brownian motion. Preprint, 1997. Zbl0997.60095
- [5] B. Davis. Weak limits of perturbed random walks and the equation Yt = Bt + α sups≤tYs + β infs≤tYs. Ann. Prob.24, 2007-2017, 1996. Zbl0870.60076
- [6] R.A. Doney, J. Warren, and M. Yor. Perturbed Bessel processes. This volume. Zbl0924.60039
- [7] F. Petit. Sur les temps passé par le mouvement brownien au dessus d'un multiple de son supremum, et quelques extensions de la loi de l'arcsinus.Thèse de doctorat de l'université Paris7, 1992.
- [8] M. Perman and W. Werner. Perturbed Brownian motions. Prob. Th. and Rel. Fields, 108, 357-383, 1997. Zbl0884.60082MR1465164
- [9] D. Revuz and M. Yor. Continuous Martingales and Brownian Motion. .Springer-Verlag , Berlin, 1991. Zbl0731.60002MR1083357
- [10] W. Werner. Some remarks on perturbed Brownian motion. Sém. de Prob., Lecture notes in Mathematics, 1613, 37-42, Springer, 1995. Zbl0835.60072MR1459447
- [11] M. Yor.Some aspects of Brownian motion, part I; some special functionals.Lectures in Mathematics, Birkhäuser, ETH Zürich, 1992. Zbl0779.60070MR1193919
Citations in EuDML Documents
top- R. A. Doney, Y. B. Nakhi, Perturbed and non-perturbed brownian taboo processes
- R. A. Doney, T. Zhang, Perturbed Skorohod equations and perturbed reflected diffusion processes
- Martin T. Barlow, Krzysztof Burdzy, Haya Kaspi, Avi Mandelbaum, Coalescence of skew brownian motions
- L. Chaumont, R. A. Doney, Y. Hu, Upper and lower limits of doubly perturbed brownian motion
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.