Some calculations for perturbed brownian motion

R.A. Doney

Séminaire de probabilités de Strasbourg (1998)

  • Volume: 32, page 231-236

How to cite

top

Doney, R.A.. "Some calculations for perturbed brownian motion." Séminaire de probabilités de Strasbourg 32 (1998): 231-236. <http://eudml.org/doc/113986>.

@article{Doney1998,
author = {Doney, R.A.},
journal = {Séminaire de probabilités de Strasbourg},
keywords = {perturbed Brownian motion; Ray-Knight theorem; two-side exit problem},
language = {eng},
pages = {231-236},
publisher = {Springer - Lecture Notes in Mathematics},
title = {Some calculations for perturbed brownian motion},
url = {http://eudml.org/doc/113986},
volume = {32},
year = {1998},
}

TY - JOUR
AU - Doney, R.A.
TI - Some calculations for perturbed brownian motion
JO - Séminaire de probabilités de Strasbourg
PY - 1998
PB - Springer - Lecture Notes in Mathematics
VL - 32
SP - 231
EP - 236
LA - eng
KW - perturbed Brownian motion; Ray-Knight theorem; two-side exit problem
UR - http://eudml.org/doc/113986
ER -

References

top
  1. [1] J. Azéma and M. Yor. Une solution simple au problème de Skorokhod. Sém. de Prob. XIII, Lecture notes in Mathematics, 721, 90-115, Springer, 1978. Zbl0414.60055MR544782
  2. [2] P. Carmona, F. Petit, and M. Yor. Some extensions of the arc-sine law as (partial) consequences of the scaling property of Brownian motion. Prob. Th. and Rel. Fields, 100, 1-29, 1994. Zbl0808.60066MR1292188
  3. [3] P. Carmona, F. Petit, and M. Yor. Beta variables as the time spent in [0, ∞) by certain perturbed Brownian motions. J.London Math. Soc.,(to appear,1997). Zbl0924.60067MR1670130
  4. [4] L. Chaumont and R.A. Doney. Applications of a path decomposition for doubly perturbed Brownian motion. Preprint, 1997. Zbl0997.60095
  5. [5] B. Davis. Weak limits of perturbed random walks and the equation Yt = Bt + α sups&le;tYs + β infs&le;tYs. Ann. Prob.24, 2007-2017, 1996. Zbl0870.60076
  6. [6] R.A. Doney, J. Warren, and M. Yor. Perturbed Bessel processes. This volume. Zbl0924.60039
  7. [7] F. Petit. Sur les temps passé par le mouvement brownien au dessus d'un multiple de son supremum, et quelques extensions de la loi de l'arcsinus.Thèse de doctorat de l'université Paris7, 1992. 
  8. [8] M. Perman and W. Werner. Perturbed Brownian motions. Prob. Th. and Rel. Fields, 108, 357-383, 1997. Zbl0884.60082MR1465164
  9. [9] D. Revuz and M. Yor. Continuous Martingales and Brownian Motion. .Springer-Verlag , Berlin, 1991. Zbl0731.60002MR1083357
  10. [10] W. Werner. Some remarks on perturbed Brownian motion. Sém. de Prob., Lecture notes in Mathematics, 1613, 37-42, Springer, 1995. Zbl0835.60072MR1459447
  11. [11] M. Yor.Some aspects of Brownian motion, part I; some special functionals.Lectures in Mathematics, Birkhäuser, ETH Zürich, 1992. Zbl0779.60070MR1193919

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.