Canonical lift and exit law of the fundamental diffusion associated with a kleinian group

Nathanaël Enriquez; Jacques Franchi; Yves Le Jan

Séminaire de probabilités de Strasbourg (2001)

  • Volume: 35, page 206-219

How to cite

top

Enriquez, Nathanaël, Franchi, Jacques, and Le Jan, Yves. "Canonical lift and exit law of the fundamental diffusion associated with a kleinian group." Séminaire de probabilités de Strasbourg 35 (2001): 206-219. <http://eudml.org/doc/114063>.

@article{Enriquez2001,
author = {Enriquez, Nathanaël, Franchi, Jacques, Le Jan, Yves},
journal = {Séminaire de probabilités de Strasbourg},
keywords = {diffusion process; hyperbolic space; Patterson measure},
language = {eng},
pages = {206-219},
publisher = {Springer - Lecture Notes in Mathematics},
title = {Canonical lift and exit law of the fundamental diffusion associated with a kleinian group},
url = {http://eudml.org/doc/114063},
volume = {35},
year = {2001},
}

TY - JOUR
AU - Enriquez, Nathanaël
AU - Franchi, Jacques
AU - Le Jan, Yves
TI - Canonical lift and exit law of the fundamental diffusion associated with a kleinian group
JO - Séminaire de probabilités de Strasbourg
PY - 2001
PB - Springer - Lecture Notes in Mathematics
VL - 35
SP - 206
EP - 219
LA - eng
KW - diffusion process; hyperbolic space; Patterson measure
UR - http://eudml.org/doc/114063
ER -

References

top
  1. [A] Ancona A.Théorie du potentiel sur les graphes et les variétés. Ecole d'été de probabilités de Saint-Flour XVIII, Lecture Notes1427, Springer1990. Zbl0719.60074MR1100282
  2. [E] Enriquez N.Thèse de l'Université Paris Sud , 3eme partie, 91405 Orsay, Septembre 1995. 
  3. [E-F-LJ-1] Enriquez N., Franchi J., Le Jan Y.Enroulements des géodésiques sous la mesure de Patterson-Sullivan. C.R.A.S.Paris, tome 326, Série 1, 723-726, 1998. Zbl0932.37013MR1641770
  4. [E-F-LJ-2] Enriquez N., Franchi J., Le Jan Y.Stable windings on hyperbolic surfaces. Prépublication, September 1999. 
  5. [E-LJ] Enriquez N., Le Jan Y.Statistic of the winding of geodesics on a Riemann surface with finite area and constant negative curvature. Rev. Mat. Iberoamericana, Vol. 13, 2, 377-401, 1997. Zbl0907.58054MR1617645
  6. [F] Franchi J.Asymptotic singular homology of a complete hyperbolic 3-manifold of Finite Volume. Proc. London Math. Soc. (3) n° 79, 451-480, 1999. Zbl1056.58012MR1702250
  7. [G] GUIVARC'H Y.Sur la représentation intégrale des fonctions harmoniques et des fonctions propres positives dans un espace riemannien symétrique. Bull. Sci. Math., 2e série, n° 108, 373-392, 1984. Zbl0562.31006MR784674
  8. [L] Ledrappier F.Harmonic 1-forms on the stable foliation. Bol. Soc. Bras. Math.25, n° 2, 121-138, 1994. Zbl0821.58034MR1306557
  9. [LJ1] Le Jan Y.The central limit theorem for the geodesic flow on non compact manifolds of constant negative curvature. Duke Math. J.74 n° 1, 159-175, 1994. Zbl0809.58031MR1271468
  10. [LJ2] Le Jan Y.Free energy for Brownian and geodesic homology. Probab. Theory Rel. Fields102, 57-61, 1995. Zbl0822.60022MR1351710
  11. [L-MG-T] Lyons T.J., Mac Gibbon K.B., Taylor J.C.Projection theorems for hitting probabilities and a theorem of Littlewood. Journal of Functional Analysis n° 59, 470-489, 1984. Zbl0566.58036MR769377
  12. [M] Mandouvalos N.Scattering operator, Eisenstein series, inner product formula and Maass-Selberg relations for Kleinian groups. Memoirs of the A.M.S. vol 78, n° 400, 1989. Zbl0673.10023MR989747
  13. [Ni] Nicholls P.J.The ergodic theory of discrete groups. London Math. Society, Lecture Note Series n° 143, Cambridge University Press, 1989. Zbl0674.58001MR1041575
  14. [P] Patterson S.J.Lectures on measures on limit sets of Kleinian groups. Analytical and geometrical aspects of hyperbolic space, D. Epstein editor, 281-323, London Math. Society, Lecture Note Series n&deg; 111, Cambridge University Press, 1987. Zbl0611.30036
  15. [P-S] Phillips R.S., Sarnak P.The Laplacean for domains in hyperbolic space and limit sets of Kleinian groups. Acta Math.155, 173-241, 1985. Zbl0611.30037MR806414
  16. [S-V] Stratman B., Velani S.L.The Patterson measure for geometrically finite groups with parabolic elements, new and old. Proc. London Math. Soc. (3) n° 71, 197-220, 1995. Zbl0821.58026MR1327939
  17. [Su1] Sullivan D.The density at infinity of a discrete group of hyperbolic motions. Publ. Math. I.H.E.S. n° 50, 171-209, 1979. Zbl0439.30034MR556586
  18. [Su2] Sullivan D.Entropy, Hausdorff measures old and new, and limit sets of geometrically finite Kleinian groups. Acta Math.153, 259-277, 1984. Zbl0566.58022MR766265

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.