Genericity in deterministic and stochastic differential equations

Jean-Jacques Alibert; Khaled Bahlali

Séminaire de probabilités de Strasbourg (2001)

  • Volume: 35, page 220-240

How to cite

top

Alibert, Jean-Jacques, and Bahlali, Khaled. "Genericity in deterministic and stochastic differential equations." Séminaire de probabilités de Strasbourg 35 (2001): 220-240. <http://eudml.org/doc/114064>.

@article{Alibert2001,
author = {Alibert, Jean-Jacques, Bahlali, Khaled},
journal = {Séminaire de probabilités de Strasbourg},
keywords = {approximation with time delay; generic property; pathwise uniqueness; weak solution},
language = {eng},
pages = {220-240},
publisher = {Springer - Lecture Notes in Mathematics},
title = {Genericity in deterministic and stochastic differential equations},
url = {http://eudml.org/doc/114064},
volume = {35},
year = {2001},
}

TY - JOUR
AU - Alibert, Jean-Jacques
AU - Bahlali, Khaled
TI - Genericity in deterministic and stochastic differential equations
JO - Séminaire de probabilités de Strasbourg
PY - 2001
PB - Springer - Lecture Notes in Mathematics
VL - 35
SP - 220
EP - 240
LA - eng
KW - approximation with time delay; generic property; pathwise uniqueness; weak solution
UR - http://eudml.org/doc/114064
ER -

References

top
  1. [O] W. Orlicz, (1932), Zur Theorie der Differentialgleichung y' = f(x,y), Bull. Acad. Polon. Sci. ser. A, pp. 221-228. Zbl0006.30401
  2. [H] P. Halmos, (1944), In general a measure preserving transformation is mixing, Ann. of Math., 45, pp. 786-792. Zbl0063.01889MR11173
  3. [R] V. Rohlin, (1948), A "general" measure preserving transformation is not mixing, Dokl. Akad. Nauk. SSSR (N.S), 60, pp. 349-351. Zbl0033.06601MR24503
  4. [CL] E. Coddington, N. Levinson, (1955), Theory of ordinary differential equations, McGraw-Hill, New-York. Zbl0064.33002MR69338
  5. [S1] A.V. Skorohod, (1965), Studies in the theory of random processes, Addison-Wesley, Reading, Massachussetts. Zbl0146.37701MR185620
  6. [LL] V. Lakshmikantham and S. Leela, (1969), Differential and integral inequalities, Academic press, New York. Zbl0177.12403
  7. [Ox] J. Oxtoby (1971), Mesure and Category, Springer, New-York. 
  8. [YW] T. Yamada, S. Watanabe, (1971). On the uniqueness of solutions of stochastic differential equations, J. Math. Kyoto Univ.11, 155-167. Zbl0236.60037MR278420
  9. [LY] A. Lasota, J.A. Yorke, (1973), The generic property of existence of solutions of differential equations in Banach space, J. Diff. Eq., 13, pp.1-12. Zbl0259.34070MR335994
  10. [V1] G. Vidossich, (1974), Existence and uniqueness of fixed point of non linear operators as a generic property, Bol. Soc. Brazil. Math.5, pp. 17-29. Zbl0349.47042MR397710
  11. [V2] G. Vidossich, (1974), Most of the successive approximations do converge, J. Math. Anal. Appl., Vol. 67, N2, pp. 437-451. 45, pp. 127-131. Zbl0346.34002MR335908
  12. [DM1] F.S. De Blasi, J. Myjack, (1977), Generic properties of hyperbolic partial differential equations, J. London Math. Soc.2, , 15, pp. 113-118. Zbl0353.35064MR437939
  13. [DM2] F.S. De Blasi, J. Myjack, (1978), Generic properties of differential equations in Banach space, Bulletin de l'Académie polonaise des sciences, série des sciences math., astr. et phys., Vol. XXVI, N 5, pp. 395-400. Zbl0393.34034MR499548
  14. [Ku] E. Kulbacka, (1978), Sur l'ensemble des points où existent les dérivées de tout ordre, Bulletin de l'Académie polonaise des sciences, série des sciences math., astr. et phys., Vol. XXVI, N 5, pp. 389-394. Zbl0393.26004MR503984
  15. [DM3] F.S. De Blasi, J. Myjack, (1979), Some generic properties of functional differential equations in Banach space, J. Math. Anal. Appl., Vol. 67, N2, pp. 437-451. Zbl0451.34058MR528699
  16. [S2] A.V. Skorohod, (1980), Stochastic differential equations dependence on a parameter, Theo. Probab. Appl., Vol. 25, N 4. Zbl0454.60058MR595131
  17. [Z] T. Zamfirescu, (1981), Most monotone functions are singular, Amer. Math. Monthly, 88, pp. 47-49. Zbl0462.26004MR619420
  18. [IW] N. Ikeda, S. Watanabe, (1981), Stochastic differential equations and diffusion processes, Amsterdam Oxford New York, North-Holland. Zbl0495.60005MR637061
  19. [KY] S. Kawabata, T. Yamada (1980/81), On some limits theorems for solutions of stochastic differential equations, Séminaire de Probabilités XVI. Lect. Notes Math., 920, Springer-Verlag, Berlin-Heidelberg. Zbl0484.60052MR658704
  20. [He] A.J. Heunis, (1986), On the prevalence of stochastic differential equations with unique strong solutions. Ann. Probab, 14, pp. 653-662. Zbl0601.60058MR832028
  21. [KN] H. Kaneko, S. Nakao, (1988), A note on approximation for stochastic differential equations, Séminaire de Probabilités XXII. Lect. Notes. Math.1321, pp.155-162, Berlin, Heidelberg: Springer. Zbl0647.60072MR960522
  22. [F] X. Fernique, (1988), Un modèle presque sûr pour la convergence en loi, C.R.Acad.Sci.Paris, t. 306, Série I, p. 335-338. Zbl0636.60025MR934613
  23. [MB] E.A. Mohamed Salah, D. Bell, (1989), On the solution of stochastic ordinary differentil equations via small delay, Stoch. Stoch. Reports, Vol. 28, 4, pp. 293-299. Zbl0684.60047MR1028535
  24. [EO] M. Erraoui, Y. Ouknine, (1994), Approximation des équations différentielles stochastiques par des équations à retard, Stoch. Stoch. Reports, Vol.46, pp.53-63. Zbl0826.60047MR1787182
  25. [Si] B. Simon, (1995), Operators with singular continuous spectrum: I. General operators, Ann. of Math., Vol 141, pp. 131-145. Zbl0851.47003MR1314033
  26. [GK] I. Gyöngy, N.V. Krylov, (1996), Existence of strong solutions for Ito's stochastic equations via approximations, Prob. Theory Relat. Fields, 105, pp. 143-158. Zbl0847.60038MR1392450
  27. [BMO1] K. Bahlali, B. Mezerdi, Y. Ouknine, (1996), Some generic properties of stochastic differential equations, Stoch. Stoch. Reports. Vol.57, pp.235-245. Zbl0892.60065MR1425367
  28. [BMO2] K. Bahlali, B. Mezerdi, Y. Ouknine, (1998), Pathwise uniqueness and approximations of stochastic differential Equations. Séminaire de Probabilités XXXII. Lect. Notes Math.1686, pp. 166-187, Springer-Verlag, Berlin-Heidelberg. Zbl0910.60049MR1655150

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.