Pathwise uniqueness and approximation of solutions of stochastic differential equations
Khaled Bahlali; Brahim Mezerdi; Youssef Ouknine
Séminaire de probabilités de Strasbourg (1998)
- Volume: 32, page 166-187
Access Full Article
topHow to cite
topBahlali, Khaled, Mezerdi, Brahim, and Ouknine, Youssef. "Pathwise uniqueness and approximation of solutions of stochastic differential equations." Séminaire de probabilités de Strasbourg 32 (1998): 166-187. <http://eudml.org/doc/113982>.
@article{Bahlali1998,
author = {Bahlali, Khaled, Mezerdi, Brahim, Ouknine, Youssef},
journal = {Séminaire de probabilités de Strasbourg},
keywords = {stochastic differential equations; stability results; Skorokhod's theorem},
language = {eng},
pages = {166-187},
publisher = {Springer - Lecture Notes in Mathematics},
title = {Pathwise uniqueness and approximation of solutions of stochastic differential equations},
url = {http://eudml.org/doc/113982},
volume = {32},
year = {1998},
}
TY - JOUR
AU - Bahlali, Khaled
AU - Mezerdi, Brahim
AU - Ouknine, Youssef
TI - Pathwise uniqueness and approximation of solutions of stochastic differential equations
JO - Séminaire de probabilités de Strasbourg
PY - 1998
PB - Springer - Lecture Notes in Mathematics
VL - 32
SP - 166
EP - 187
LA - eng
KW - stochastic differential equations; stability results; Skorokhod's theorem
UR - http://eudml.org/doc/113982
ER -
References
top- [1] K. Bahlali, B. Mezerdi, Y. Ouknine: Some generic properties of stochastic differential equations. Stochastics & stoch. reports, vol. 57, pp. 235-245 (1996). Zbl0892.60065
- [2] M.T. Barlow: One dimensional stochastic differential equations with no strong solution. J. London Math. Soc. (2) 26; 335-347. Zbl0456.60062MR675177
- [3] E. Coddington, N. Levinson: Theory of ordinary differential equations. McGraw-HillNew-york (1955). Zbl0064.33002MR69338
- [4] J. Dieudonné: Choix d'oeuvres mathématiques. Tome 1, HermannParis (1987).
- [5] N. El Karoui, D. Huu Nguyen, M. Jeanblanc Piqué : Compactification methods in the control of degenerate diffusions: existence of an optimal control. Stochastics vol .20, pp.169-219 (1987). Zbl0613.60051MR878312
- [6] M. Erraoui, Y. Ouknine: Approximation des équations différentielles stochastiques par des équations à retard. Stochastics & stoch, reports vol. 46, pp. 53-63 (1994). Zbl0826.60047
- [7] M. Erraoui, Y. Ouknine: Sur la convergence de la formule de Lie-Trotter pour les équations différentielles stochastiques. Annales de Clermont II, série probabilités (to appear). Zbl0854.60054MR1321673
- [8] T.C. Gard: A general uniqueness theorem for solutions of stochastic differential equations. SIAM jour. control & optim., vol. 14, 3, pp.445-457. Zbl0332.60037
- [9] I. Gyöngy: The stability of stochastic partial differential equations and applications. Stochastics & stoch. reports, vol. 27, pp.129-150 (1989). Zbl0726.60060
- [10] A.J. Heunis: On the prevalence of stochastic differential equations with unique strong solutions. The Annals of proba., vol. 14, 2, pp 653-662 (1986). Zbl0601.60058MR832028
- [11] N. Ikeda, S. Watanabe: Stochastic differential equations and diffusion processes. North-Holland, Amsterdam(Kodansha Ltd, Tokyo) (1981). Zbl0495.60005MR637061
- [12] H. Kaneko, S. Nakao : A note on approximation of stochastic differential equations. Séminaire de proba. XXII, lect. notes in math.1321, pp. 155-162. Springer verlag (1988). Zbl0647.60072MR960522
- [13] I. Karatzas, S.E. Shreve: Brownian motion and stochastic calculus. Springer verlag, New- York Berlin Heidelberg (1988). Zbl0638.60065MR917065
- [14] S. Kawabata: On the successive approximation of solutions of stochastic differential equations. Stochastics & stoch.reports, voL 30, pp. 69-84 (1990). Zbl0708.60051
- [15] N.V. Krylov: Controlled diffusion processes. Springer Verlag, New- York Berlin Heidelberg (1980). Zbl0459.93002MR601776
- [16] A. Lasota, J.A. Yorke: The generic property of existence of solutions of differential equations in Banach space. J. Diff. Equat.13 (1973), pp. 1-12. Zbl0259.34070MR335994
- [17] S. Méléard: Martingale measure approximation, application to the control of diffusions. Prépublication du labo. de proba. , univ. Paris VI (1992).
- [18] W. Orlicz: Zur theorie der Differentialgleichung y' = f (z,y) . Bull. Acad. Polon. Sci. Ser. A (1932), pp. 221-228. Zbl0006.30401
- [19] A.V. Skorokhod: Studies in the theory of random processes. Addison Wesley (1965), originally published in Kiev in (1961). Zbl0146.37701MR185620
- [20] D.W. Strook, S.R.S. Varadhan: Mutidimensional diffusion processes. Springer VerlagBerlin (1979).
- [21] T. Yamada: On the successive approximation of solutions of stochastic differential equations. Jour. Math. Kyoto Univ.21 (3), pp. 501-511 (1981). Zbl0484.60053MR629781
- [22] T. Yamada, S. Watanabe: On the uniqueness of solutions of stochastic differential equations. Jour. Math. Kyoto Univ.11 n°1, pp. 155-167 (1971). Zbl0236.60037MR278420
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.