Pathwise uniqueness and approximation of solutions of stochastic differential equations

Khaled Bahlali; Brahim Mezerdi; Youssef Ouknine

Séminaire de probabilités de Strasbourg (1998)

  • Volume: 32, page 166-187

How to cite

top

Bahlali, Khaled, Mezerdi, Brahim, and Ouknine, Youssef. "Pathwise uniqueness and approximation of solutions of stochastic differential equations." Séminaire de probabilités de Strasbourg 32 (1998): 166-187. <http://eudml.org/doc/113982>.

@article{Bahlali1998,
author = {Bahlali, Khaled, Mezerdi, Brahim, Ouknine, Youssef},
journal = {Séminaire de probabilités de Strasbourg},
keywords = {stochastic differential equations; stability results; Skorokhod's theorem},
language = {eng},
pages = {166-187},
publisher = {Springer - Lecture Notes in Mathematics},
title = {Pathwise uniqueness and approximation of solutions of stochastic differential equations},
url = {http://eudml.org/doc/113982},
volume = {32},
year = {1998},
}

TY - JOUR
AU - Bahlali, Khaled
AU - Mezerdi, Brahim
AU - Ouknine, Youssef
TI - Pathwise uniqueness and approximation of solutions of stochastic differential equations
JO - Séminaire de probabilités de Strasbourg
PY - 1998
PB - Springer - Lecture Notes in Mathematics
VL - 32
SP - 166
EP - 187
LA - eng
KW - stochastic differential equations; stability results; Skorokhod's theorem
UR - http://eudml.org/doc/113982
ER -

References

top
  1. [1] K. Bahlali, B. Mezerdi, Y. Ouknine: Some generic properties of stochastic differential equations. Stochastics & stoch. reports, vol. 57, pp. 235-245 (1996). Zbl0892.60065
  2. [2] M.T. Barlow: One dimensional stochastic differential equations with no strong solution. J. London Math. Soc. (2) 26; 335-347. Zbl0456.60062MR675177
  3. [3] E. Coddington, N. Levinson: Theory of ordinary differential equations. McGraw-HillNew-york (1955). Zbl0064.33002MR69338
  4. [4] J. Dieudonné: Choix d'oeuvres mathématiques. Tome 1, HermannParis (1987). 
  5. [5] N. El Karoui, D. Huu Nguyen, M. Jeanblanc Piqué : Compactification methods in the control of degenerate diffusions: existence of an optimal control. Stochastics vol .20, pp.169-219 (1987). Zbl0613.60051MR878312
  6. [6] M. Erraoui, Y. Ouknine: Approximation des équations différentielles stochastiques par des équations à retard. Stochastics & stoch, reports vol. 46, pp. 53-63 (1994). Zbl0826.60047
  7. [7] M. Erraoui, Y. Ouknine: Sur la convergence de la formule de Lie-Trotter pour les équations différentielles stochastiques. Annales de Clermont II, série probabilités (to appear). Zbl0854.60054MR1321673
  8. [8] T.C. Gard: A general uniqueness theorem for solutions of stochastic differential equations. SIAM jour. control & optim., vol. 14, 3, pp.445-457. Zbl0332.60037
  9. [9] I. Gyöngy: The stability of stochastic partial differential equations and applications. Stochastics & stoch. reports, vol. 27, pp.129-150 (1989). Zbl0726.60060
  10. [10] A.J. Heunis: On the prevalence of stochastic differential equations with unique strong solutions. The Annals of proba., vol. 14, 2, pp 653-662 (1986). Zbl0601.60058MR832028
  11. [11] N. Ikeda, S. Watanabe: Stochastic differential equations and diffusion processes. North-Holland, Amsterdam(Kodansha Ltd, Tokyo) (1981). Zbl0495.60005MR637061
  12. [12] H. Kaneko, S. Nakao : A note on approximation of stochastic differential equations. Séminaire de proba. XXII, lect. notes in math.1321, pp. 155-162. Springer verlag (1988). Zbl0647.60072MR960522
  13. [13] I. Karatzas, S.E. Shreve: Brownian motion and stochastic calculus. Springer verlag, New- York Berlin Heidelberg (1988). Zbl0638.60065MR917065
  14. [14] S. Kawabata: On the successive approximation of solutions of stochastic differential equations. Stochastics & stoch.reports, voL 30, pp. 69-84 (1990). Zbl0708.60051
  15. [15] N.V. Krylov: Controlled diffusion processes. Springer Verlag, New- York Berlin Heidelberg (1980). Zbl0459.93002MR601776
  16. [16] A. Lasota, J.A. Yorke: The generic property of existence of solutions of differential equations in Banach space. J. Diff. Equat.13 (1973), pp. 1-12. Zbl0259.34070MR335994
  17. [17] S. Méléard: Martingale measure approximation, application to the control of diffusions. Prépublication du labo. de proba. , univ. Paris VI (1992). 
  18. [18] W. Orlicz: Zur theorie der Differentialgleichung y' = f (z,y) . Bull. Acad. Polon. Sci. Ser. A (1932), pp. 221-228. Zbl0006.30401
  19. [19] A.V. Skorokhod: Studies in the theory of random processes. Addison Wesley (1965), originally published in Kiev in (1961). Zbl0146.37701MR185620
  20. [20] D.W. Strook, S.R.S. Varadhan: Mutidimensional diffusion processes. Springer VerlagBerlin (1979). 
  21. [21] T. Yamada: On the successive approximation of solutions of stochastic differential equations. Jour. Math. Kyoto Univ.21 (3), pp. 501-511 (1981). Zbl0484.60053MR629781
  22. [22] T. Yamada, S. Watanabe: On the uniqueness of solutions of stochastic differential equations. Jour. Math. Kyoto Univ.11 n°1, pp. 155-167 (1971). Zbl0236.60037MR278420

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.