On weak convergence of filtrations

François Coquet; Jean Mémin; Leszek Slominski

Séminaire de probabilités de Strasbourg (2001)

  • Volume: 35, page 306-328

How to cite

top

Coquet, François, Mémin, Jean, and Slominski, Leszek. "On weak convergence of filtrations." Séminaire de probabilités de Strasbourg 35 (2001): 306-328. <http://eudml.org/doc/114069>.

@article{Coquet2001,
author = {Coquet, François, Mémin, Jean, Slominski, Leszek},
journal = {Séminaire de probabilités de Strasbourg},
keywords = {weak convergence of filtrations; Skorokhod topology; càdlàg process},
language = {eng},
pages = {306-328},
publisher = {Springer - Lecture Notes in Mathematics},
title = {On weak convergence of filtrations},
url = {http://eudml.org/doc/114069},
volume = {35},
year = {2001},
}

TY - JOUR
AU - Coquet, François
AU - Mémin, Jean
AU - Slominski, Leszek
TI - On weak convergence of filtrations
JO - Séminaire de probabilités de Strasbourg
PY - 2001
PB - Springer - Lecture Notes in Mathematics
VL - 35
SP - 306
EP - 328
LA - eng
KW - weak convergence of filtrations; Skorokhod topology; càdlàg process
UR - http://eudml.org/doc/114069
ER -

References

top
  1. 1. D. Aldous, Weak convergence for stochastic processes for processes viewed in the Strasbourg manner, Preprint, Statist. Laboratory Univ.Cambridge,1978. MR467878
  2. 2. D. Aldous, Stopping times and Tightness II, Ann. Probab., 17, No. 2, p. 586-595, 1989. Zbl0686.60036MR985380
  3. 3. F. Antonelli, Backward-forward stochastic differential equations, The Annals of Applied Probability, 3 (3), p. 777-793, 1993. Zbl0780.60058MR1233625
  4. 4. F. Antonelli, A. Kohatsu-Higa, Filtration stability of backward SDE's, Stochastic Anal. Appl., to appear. Zbl0953.60044MR1739298
  5. 5. P. Billingsley, Convergence of Probability Measures, Wiley, New York, 1968 Zbl0172.21201MR233396
  6. 6. B. Cadre, Functional asymptotic behavior of some random multilinear forms, stochastic Process. Appl., 68, p. 49-65, 1997. Zbl0890.60018MR1454578
  7. 7. F. Coquet, V. Mackevicius and J. Mémin, Stability in ID of martingales and backward equations under discretization of filtration, Stochastic Process. Appl., 75, p 235-248, 1998. Zbl0932.60047MR1632205
  8. 8. F. Coquet, V. Mackevicius and J. Mémin, Corrigendum to "Stability in ID of martingales and backward equations under discretization of filtration", Stochastic Process. Appl., 82, p. 332-335, 1999. Zbl0997.60061MR1700013
  9. 9. C. Dellacherie and P.A. Meyer, Probabilités et Potentiels, Vol. 2, Hermann, Paris, 1980. Zbl0464.60001MR566768
  10. 10. C. Dellacherie, B. Maisonneuve and P.A. Meyer, Probabilités et Potentiels, Vol. 5, Hermann, Paris, 1992. MR566768
  11. 11. S.N. Ethier and T.G. Kurtz, Markov Processes: Characterization and Convergence, Wiley, New-York, 1986. Zbl0592.60049MR838085
  12. 12. D.N. Hoover, Convergence in distribution and Skorokhod convergence for the general theory of processes, Probab. Theory Related Fields, 89, p. 239-259, 1991. Zbl0725.60005MR1113218
  13. 13. J. Jacod and A.N. Shiryaev, Limit Theorems for Stochastic Processes, Springer-Verlag, Berlin Heidelberg New York, 1987. Zbl0635.60021MR959133
  14. 14. A. Jakubowski and L. Slominski, Extended convergence to continuous in probability processes with independent increments, Probab. Theory Related Fields, 72, p. 55-82, 1986. Zbl0596.60038MR835159
  15. 15. A. Jakubowski, J. Mémin and G. Pagès, Convergence en loi des suites d'intégrales stochastiques sur l'espace ID1 de Skorokhod, Probab. Theory Related Fields, 81, p. 111-137, 1989. Zbl0638.60049MR981569
  16. 16. O. Kallenberg, Foundations of Modern Probability, Springer-Verlag, Berlin Heidelberg NewYork, 1997. Zbl0892.60001MR1464694
  17. 17. K. Kubilius and M. Mikulevicius, On necessary and sufficient conditions for the convergence of semimartingales, Proceedings 4th Japan-USSR symp., Lecture Notes in Mathematics, 1021, p. 338-351, Springer-Verlag, Berlin Heidelberg New York, 1983. Zbl0518.60043MR736001
  18. 18. J. Mémin and L. Slominski, Condition UT et stabilité en loi des solutions d'équations différentielles stochastiques, Séminaire de Probabilités XXV, Lecture Notes in Mathematics, 1485, p. 162-177, Springer-Verlag, Berlin Heidelberg New York, 1991. Zbl0746.60063MR1187779
  19. 19. D. Revuz and M. Yor, Continuous Martingales and Brownian Motion, Springer-Verlag, Berlin Heidelberg New-York, 1991. Zbl0731.60002MR1083357
  20. 20. L. Slominski, Stability of strong solutions of stochastic differential equations, Stochastic Process. Appl., 31, p. 173-202, 1989. Zbl0673.60065MR998112
  21. 21. M. Yor, Les inégalités de sous-martingales comme conséquences de la relation de domination, Stochastics, 3, p. 1-19, 1979. Zbl0437.60038MR546696

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.