Stability of solutions of BSDEs with random terminal time
ESAIM: Probability and Statistics (2006)
- Volume: 10, page 141-163
- ISSN: 1292-8100
Access Full Article
topAbstract
topHow to cite
topReferences
top- F. Antonelli and A. Kohatsu-Higa, Filtration stability of backward SDE's. Stochastic Anal. Appl.18 (2000) 11–37.
- P. Billingsley, Convergence of Probability Measures, Second Edition. Wiley and Sons, New York (1999).
- P. Briand, B. Delyon and J. Mémin, Donsker-type theorem for BSDEs. Electron. Comm. Probab.6 (2001) 1–14 (electronic).
- P. Briand, B. Delyon and J. Mémin, On the robustness of backward stochastic differential equations. Stochastic Process. Appl.97 (2002) 229–253.
- K.L. Chung and Z.X. Zhao, From Brownian motion to Schrödinger's equation, Springer-Verlag, Berlin Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences] 312 (1995).
- F. Coquet, V. Mackevičius and J. Mémin, Stability in D of martingales and backward equations under discretization of filtration. Stochastic Process. Appl.75 (1998) 235–248.
- F. Coquet, V. Mackevičius and J. Mémin, Corrigendum to: “Stability in D of martingales and backward equations under discretization of filtration”. Stochastic Process. Appl.82 (1999) 335–338.
- F. Coquet, J. Mémin and L. Słomiński, On weak convergence of filtrations. Séminaire de probabilités XXXV, Springer-Verlag, Berlin Heidelberg New York, Lect. Notes Math.1755 (2001) 306–328.
- J. Haezendonck and F. Delbaen, Caractérisation de la tribu des événements antérieurs à un temps d'arrêt pour un processus stochastique. Acad. Roy. Belg., Bulletin de la Classe Scientifique56 (1970) 1085–1092.
- D.N. Hoover, Convergence in distribution and Skorokhod convergence for the general theory of processes. Probab. Theory Related Fields89 (1991) 239–259.
- J. Jacod and A.N. Shiryaev, Limit Theorems for Stochastic Processes, Springer-Verlag, Berlin Heidelberg New York (1987).
- I. Karatzas and S. Shreve, Brownian Motion and Stochastic Calculus, Second Edition. Springer-Verlag, Berlin Heidelberg New York (1991).
- J. Ma, P. Protter, J. San Martín and S. Torres, Numerical method for backward stochastic differential equations. Ann. Appl. Probab.12 (2002) 302–316.
- S. Peng, Probabilistic interpretation for systems of quasilinear parabolic partial differential equations. Stoch. Stoch. Rep.37 (1991) 61–74.
- M. Royer, BSDEs with a random terminal time driven by a monotone generator and their links with PDEs. Stoch. Stoch. Rep.76 (2004) 281–307.