From Tanaka's formula to Ito's formula : distributions, tensor products and local times
Séminaire de probabilités de Strasbourg (2001)
- Volume: 35, page 371-389
Access Full Article
topHow to cite
topRajeev, Bhaskaran. "From Tanaka's formula to Ito's formula : distributions, tensor products and local times." Séminaire de probabilités de Strasbourg 35 (2001): 371-389. <http://eudml.org/doc/114073>.
@article{Rajeev2001,
author = {Rajeev, Bhaskaran},
journal = {Séminaire de probabilités de Strasbourg},
keywords = {semimartingale; infinite-dimensional approach; Tanaka formulae; Hilbert space; tensorial integration; Itô formulae},
language = {eng},
pages = {371-389},
publisher = {Springer - Lecture Notes in Mathematics},
title = {From Tanaka's formula to Ito's formula : distributions, tensor products and local times},
url = {http://eudml.org/doc/114073},
volume = {35},
year = {2001},
}
TY - JOUR
AU - Rajeev, Bhaskaran
TI - From Tanaka's formula to Ito's formula : distributions, tensor products and local times
JO - Séminaire de probabilités de Strasbourg
PY - 2001
PB - Springer - Lecture Notes in Mathematics
VL - 35
SP - 371
EP - 389
LA - eng
KW - semimartingale; infinite-dimensional approach; Tanaka formulae; Hilbert space; tensorial integration; Itô formulae
UR - http://eudml.org/doc/114073
ER -
References
top- 1. Bass, R. (1984) : Joint continuity and representations of additive functionals of d dimensional Brownian motion, Stoch. Proc. Appl.17 (1984), 211-227. Zbl0543.60080MR751203
- 2. Bertoin, J. (1990) : Complements on Hilbert transform and the fractional derivative of Brownian motion, Journal of Mathematics of Kyoto University30, 4(1990). Zbl0725.60084MR1088348
- 3. Biane Ph., Yor, M. (1987) : Valeurs principales associées aux temps locaux brownien, Bul. Sci. Math.111, 23-101. Zbl0619.60072MR886959
- 4. Boufoussi B., Roynette B. (1993) : Le temps local brownien appartient p.s. à l'espace de Besov B1/2p,∞ , C. R. Acad. Sci., Paris, Ser. I, Math. 316. Zbl0788.46035MR1218273
- 5. Brosamler, G. (1970) : Quadratic variation of potentials and harmonic functions, Transactions of the American Math. Society147. Zbl0248.60057MR270442
- 6. Dynkin, E.B. (1994) : An Introduction to Branching Measure Valued Processes, CRM Monograph series, Vol. 6, AMSProvence. Zbl0824.60001MR1280712
- 7. Föllmer, H., Protter, P., Shiryaev, A.N. (1995) : Quadratic covariation and an extension of Ito's formula, Bernoulli1/2, p. 149-169. Zbl0851.60048MR1354459
- 8. Fukushima, M., Oshima Y., Takecha M. : Dirichlet forms and Symmetric Markov Processes, De GruyterStudies in Mathematics, 19.
- 9. Gelfand, I., Vilenkin, N. Ya (1964) : Generalized functions Vol. 4, Academic Press, New York. MR173945
- 10. Hida, T. (1980) : Brownian Motion, Springer Verlag. Zbl0432.60002MR562914
- 11. Ito, K. (1984) : Foundations of stochastic differential equations in infinite dimensional spaces, Proceedings of CBMS - NSF National Conference series in Applied Mathematics, SIAM. Zbl0547.60064MR771478
- 12. Kallianpur, G., Xiong, J. (1995) : Stochastic Differential Equations in Infinite Dimensional Spaces, Lecture Notes, Monograph series, Vol. 26, Institute of Mathematical Statistics. Zbl0859.60050MR1465436
- 13. Korezlioglu, H., Ustunel, A.S. (Eds.) (1986) : Stochastic Analysis & Related Topics. Proceedings, Silvri 1986, LNM1316, Springer Verlag. Zbl0634.00016
- 14. Krylov, N.V. (1980) : Controlled Diffusion Processes, Springer Verlag. Zbl0459.93002MR601776
- 15. Le Gall, J.F. (1985) : Sur le temps local d'intersection du mouvement brownien plan et la méthode de renormalisation de Varadhan, Séminaire de Probabilités XIX, LNM1123, Springer Verlag. Zbl0563.60072MR889492
- 16. Le Gall, J.F. (1996) : Super processes, Brownian snakes and partial differential equations, Prépublication n° 337 du Laboratoire de Probabilités de l'Université Paris VI.
- 17. Marcus, M.B. & Rosen, J. : Renormalised self intersection local times and Wick power chaos processes (pre-print). Zbl1230.60005
- 18. Métivier, M., Pellaumail, J. (1969) : Stochastic Integration, Academic Press, New York.
- 19. Métivier, M. (1982) : Semi Martingales - A Course on Stochastic Processes, Walter de Gruyter. Zbl0503.60054
- 20. Motoo, M. : Distribution valued additive functionals and representation of additive functionals (pre-print).
- 21. Meyer, P.A. (1978) : La formule d'Ito pour le mouvement brownien, d'apres G. Brosamler, Séminaire de Probabilités XII, LNM649, Springer Verlag. Zbl0388.60055MR520044
- 22. Nualart, D. & Vives, J. (1992) : Potential Analysis No. 3, 257-263. Zbl0776.60092
- 23. Parthasarathy, K.R. (1992) : An Introduction to Quantum Stochastic Calculus, Birkhäuser. Zbl0751.60046MR1164866
- 24. Protter, P. & San Martin, Jaime (1993) : General change of variable formula for semi-martingales in one and finite dimensions, Probability Theory and Related Fields97. Zbl0792.60045
- 25. Rajeev, B. (1997) : From Tanaka formula to Ito formula : The fundamental theorem of stochastic calculus, Proceedings of the Indian Academy of Sciences (Math. Sci.), Vol. 107, No. 3, p. 319-327. Zbl0907.60051MR1467435
- 26. Revuz, D., Yor, M. (1991) : Continuous Martingales and Brownian Motion, Springer Verlag. Zbl0731.60002MR1083357
- 27. Röckner, M. (1993) : General Theory of Dirichlet Forms and Applications, LNM1563, Springer Verlag, Berlin. Zbl0815.60075MR1292279
- 28. Symanzik, K. (1969) : Euclidean Quantum Field Theory, In 'Local Quantum Theory', Jost. R., (Ed.)Academic Press, New York.
- 29. Thangavelu, S.(1993) : Lectures on Hermite and Laguerre Expansions, Princeton University Press. Zbl0791.41030MR1215939
- 30. Trèves, F. (1967) : Topological Vector Spaces, Distributions and Kernels, Academic Press, New York. Zbl0171.10402MR225131
- 31. Varadhan, S.R.S. (1969) : Appendix to Symanzik K. (1969) : Euclidean Quantum Field Theory, In 'Local Quantum Theory, Jost, R. (Ed.), Academic Press, New York.
- 32. Walsh, J.B. (1986) : An introduction to stochastic partial differential equationsLNM1180, Springer Verlag. Zbl0608.60060MR876085
- 33. Watanabe, S. (1984) : Stochastic Differential Equations and Malliavin Calculus, TIFR lecture notes, Springer Verlag. Zbl0546.60054
- 34. Yor, M. (1982) : Sur la transformée de Hilbert des temps locaux browniens et une extension de la formule d'Ito, Séminaire de Probabilités, LNM920, Springer Verlag. Zbl0495.60080MR658687
- 35. Yor, M. (1974) : Existence et unicité de diffusions à valeurs dans un espace de Hilbert, Ann. Inst. Henri Poincaré, Vol. X, no.1, p. 55 - 88. Zbl0281.60094MR356257
- 36. Da Prato, G. & Zabczyk, J. (1992) : Stochastic equations in infinite dimensions, Encyclopedia of Mathematics and its Applications44, Cambridge University Press. Zbl0761.60052
- 37. Gawarecki, L., Mandrekar, V., & Richard, P. (1999): Existence of weak solutions for stochastic differential equations and martingale solutions for stochastic semilinear equations, Random Operators and Stochastic Equations, 7, no.3, p. 215-240. Zbl0951.60063
- 38. Kallianpur, G., Mitoma, I., & Wolpert, R.L. (1990): Diffusion equations in dual of nuclear spaces, Stochastics and Stochastics Reports, 29, p. 285-329. Zbl0702.60056
- 39. Krylov, N.V. & Rozovskii, B.L. (1981): Stochastic evolution equations, J. of Soviet Math., 16, p. 1223-1277. Zbl0462.60060
- 40. Pardoux, E. (1979): Stochastic partial differential equations and filtering of diffusion processes, Stochastics, Vol. 3, p. 127-167. Zbl0424.60067MR553909
- 41. Rozovskii, B.L. (1990): Stochastic Evolution Systems, Kluwer Academic Publishers, The Netherlands. Zbl0724.60070MR1135324
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.