An F σ semigroup of zero measure which contains a translate of every countable set

John A. Haight

Groupe d'étude en théorie analytique des nombres (1984-1985)

  • Volume: 1, page 1-9

How to cite

top

Haight, John A.. "An $F_\sigma $ semigroup of zero measure which contains a translate of every countable set." Groupe d'étude en théorie analytique des nombres 1 (1984-1985): 1-9. <http://eudml.org/doc/114195>.

@article{Haight1984-1985,
author = {Haight, John A.},
journal = {Groupe d'étude en théorie analytique des nombres},
keywords = {asymmetric Raikov systems},
language = {eng},
pages = {1-9},
publisher = {Secrétariat mathématique},
title = {An $F_\sigma $ semigroup of zero measure which contains a translate of every countable set},
url = {http://eudml.org/doc/114195},
volume = {1},
year = {1984-1985},
}

TY - JOUR
AU - Haight, John A.
TI - An $F_\sigma $ semigroup of zero measure which contains a translate of every countable set
JO - Groupe d'étude en théorie analytique des nombres
PY - 1984-1985
PB - Secrétariat mathématique
VL - 1
SP - 1
EP - 9
LA - eng
KW - asymmetric Raikov systems
UR - http://eudml.org/doc/114195
ER -

References

top
  1. [1] Brown ( G.) and Moran ( W.). - Raikov systems and radicals in convolution measure algebras, J. of London math. Soc., Series 2, t. 28, 1983, p. 531-542. Zbl0545.43003MR724723
  2. [2] Cassels ( J.W.S.). - On a method of Marshall Hall, Mathematika, London, t. 31, 1956, p. 109-110. Zbl0073.03401
  3. [3] Connolly ( D.M.) and Williamson ( J.H.). - Bifference-covers that are not ksum covers II, Proc. Cambridge, phil. Soc., t. 75, 1974, p. 63-73. Zbl0276.05023MR396465
  4. [4] Davenport ( H.). - A note on diophantine approximation, Studies in mathematical analysis and related topics, p. 77-81. - Stanford, Stanford university.Press, 1962. Zbl0114.02903MR146145
  5. [5] Gelfand ( I.M.), Raikov ( D.A.) and Shilov ( G.E.). - Commutative normed rings. - New York, Chelsea publishing Company, 1964. MR205105
  6. [6] Haight ( J.A.). - Difference covers which have small k-sums for any k, Mathematika, London, t. 20, 1973, p. 109-118. Zbl0267.05013MR337875
  7. [7] Hall ( Marschall, Jr.). - On the sum and product of continued fractions, Annals of Math., Series 2, t. 48, 1947, p. 966-993. Zbl0030.02201MR22568
  8. [8] Hlawka ( J.L.). - Results on sums of continued fractions, Trans. Amer. math. Soc., t. 211, 1975, p. 123-134. Zbl0313.10032MR376545
  9. [9] Jackson ( T.H.). - Asymmetric sets of residues, Mathematika, London, t. 19, 1972, p. 191-199. Zbl0256.10029MR316361
  10. [10] Piccard ( S.). - Sur des ensembles parfaits, Mémoires de l'Université de Neuchâtel, Neuchâtel, t. 16, Secrétariat de l'Université de Neuchâtel, 1942. MR8835JFM68.0102.03
  11. [11] Schmide ( W.M.). - On badly approximable numbers, Mathematika, London, t. 12, 1965, p. 10-20. Zbl0163.04802MR181610

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.