An semigroup of zero measure which contains a translate of every countable set
Groupe d'étude en théorie analytique des nombres (1984-1985)
- Volume: 1, page 1-9
Access Full Article
topHow to cite
topHaight, John A.. "An $F_\sigma $ semigroup of zero measure which contains a translate of every countable set." Groupe d'étude en théorie analytique des nombres 1 (1984-1985): 1-9. <http://eudml.org/doc/114195>.
@article{Haight1984-1985,
author = {Haight, John A.},
journal = {Groupe d'étude en théorie analytique des nombres},
keywords = {asymmetric Raikov systems},
language = {eng},
pages = {1-9},
publisher = {Secrétariat mathématique},
title = {An $F_\sigma $ semigroup of zero measure which contains a translate of every countable set},
url = {http://eudml.org/doc/114195},
volume = {1},
year = {1984-1985},
}
TY - JOUR
AU - Haight, John A.
TI - An $F_\sigma $ semigroup of zero measure which contains a translate of every countable set
JO - Groupe d'étude en théorie analytique des nombres
PY - 1984-1985
PB - Secrétariat mathématique
VL - 1
SP - 1
EP - 9
LA - eng
KW - asymmetric Raikov systems
UR - http://eudml.org/doc/114195
ER -
References
top- [1] Brown ( G.) and Moran ( W.). - Raikov systems and radicals in convolution measure algebras, J. of London math. Soc., Series 2, t. 28, 1983, p. 531-542. Zbl0545.43003MR724723
- [2] Cassels ( J.W.S.). - On a method of Marshall Hall, Mathematika, London, t. 31, 1956, p. 109-110. Zbl0073.03401
- [3] Connolly ( D.M.) and Williamson ( J.H.). - Bifference-covers that are not ksum covers II, Proc. Cambridge, phil. Soc., t. 75, 1974, p. 63-73. Zbl0276.05023MR396465
- [4] Davenport ( H.). - A note on diophantine approximation, Studies in mathematical analysis and related topics, p. 77-81. - Stanford, Stanford university.Press, 1962. Zbl0114.02903MR146145
- [5] Gelfand ( I.M.), Raikov ( D.A.) and Shilov ( G.E.). - Commutative normed rings. - New York, Chelsea publishing Company, 1964. MR205105
- [6] Haight ( J.A.). - Difference covers which have small k-sums for any k, Mathematika, London, t. 20, 1973, p. 109-118. Zbl0267.05013MR337875
- [7] Hall ( Marschall, Jr.). - On the sum and product of continued fractions, Annals of Math., Series 2, t. 48, 1947, p. 966-993. Zbl0030.02201MR22568
- [8] Hlawka ( J.L.). - Results on sums of continued fractions, Trans. Amer. math. Soc., t. 211, 1975, p. 123-134. Zbl0313.10032MR376545
- [9] Jackson ( T.H.). - Asymmetric sets of residues, Mathematika, London, t. 19, 1972, p. 191-199. Zbl0256.10029MR316361
- [10] Piccard ( S.). - Sur des ensembles parfaits, Mémoires de l'Université de Neuchâtel, Neuchâtel, t. 16, Secrétariat de l'Université de Neuchâtel, 1942. MR8835JFM68.0102.03
- [11] Schmide ( W.M.). - On badly approximable numbers, Mathematika, London, t. 12, 1965, p. 10-20. Zbl0163.04802MR181610
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.