Page 1 Next

Displaying 1 – 20 of 236

Showing per page

A characterization of partition polynomials and good Bernoulli trial measures in many symbols

Andrew Yingst (2014)

Colloquium Mathematicae

Consider an experiment with d+1 possible outcomes, d of which occur with probabilities x , . . . , x d . If we consider a large number of independent occurrences of this experiment, the probability of any event in the resulting space is a polynomial in x , . . . , x d . We characterize those polynomials which arise as the probability of such an event. We use this to characterize those x⃗ for which the measure resulting from an infinite sequence of such trials is good in the sense of Akin.

A characterization of space-filling curves.

Gaspar Mora, Juan A. Mira (2002)

RACSAM

En este artículo revisamos un famoso teorema, descubierto por H. Steinhaus en 1936, en el que se da una condición suficiente que permite obtener las funciones coordenadas de una curva que llena el cuadrado unidad. Ponemos de manifiesto que el recíproco de este teorema no se cumple para la curva de Lebesgue. Aquí proponemos un teorema de caracterización de curvas que llenan el espacio, basado en una condición de llenado. Asimismo, damos una caracterización constructiva de esta condición de llenado...

A Characterization of Uniform Distribution

Joanna Chachulska (2005)

Bulletin of the Polish Academy of Sciences. Mathematics

Is the Lebesgue measure on [0,1]² a unique product measure on [0,1]² which is transformed again into a product measure on [0,1]² by the mapping ψ(x,y) = (x,(x+y)mod 1))? Here a somewhat stronger version of this problem in a probabilistic framework is answered. It is shown that for independent and identically distributed random variables X and Y constancy of the conditional expectations of X+Y-I(X+Y > 1) and its square given X identifies uniform distribution either absolutely continuous or discrete....

A Dieudonné theorem for lattice group-valued measures

Giuseppina Barbieri (2019)

Kybernetika

A version of Dieudonné theorem is proved for lattice group-valued modular measures on lattice ordered effect algebras. In this way we generalize some results proved in the real-valued case.

A nonlinear Banach-Steinhaus theorem and some meager sets in Banach spaces

Jacek Jachymski (2005)

Studia Mathematica

We establish a Banach-Steinhaus type theorem for nonlinear functionals of several variables. As an application, we obtain extensions of the recent results of Balcerzak and Wachowicz on some meager subsets of L¹(μ) × L¹(μ) and c₀ × c₀. As another consequence, we get a Banach-Mazurkiewicz type theorem on some residual subset of C[0,1] involving Kharazishvili's notion of Φ-derivative.

An inquiry-based method for Choquet integral-based aggregation of interface usability parameters

Miguel-Ángel Sicilia, Elena García Barriocanal, Tomasa Calvo (2003)

Kybernetika

The concept of usability of man-machine interfaces is usually judged in terms of a number of aspects or attributes that are known to be subject to some rough correlations, and that are in many cases given different importance, depending on the context of use of the application. In consequence, the automation of judgment processes regarding the overall usability of concrete interfaces requires the design of aggregation operators that are capable of modeling approximate or ill-defined interactions...

Currently displaying 1 – 20 of 236

Page 1 Next