L'asymptotique des valeurs propres pour l'opérateur de Schrödinger avec un potentiel périodique perturbé

George D. Raikov

Séminaire de théorie spectrale et géométrie (1990-1991)

  • Volume: 9, page 133-139
  • ISSN: 1624-5458

How to cite

top

Raikov, George D.. "L'asymptotique des valeurs propres pour l'opérateur de Schrödinger avec un potentiel périodique perturbé." Séminaire de théorie spectrale et géométrie 9 (1990-1991): 133-139. <http://eudml.org/doc/114309>.

@article{Raikov1990-1991,
author = {Raikov, George D.},
journal = {Séminaire de théorie spectrale et géométrie},
keywords = {asymptotic expansion; asymptotic value; number of eigenvalues},
language = {fre},
pages = {133-139},
publisher = {Institut Fourier},
title = {L'asymptotique des valeurs propres pour l'opérateur de Schrödinger avec un potentiel périodique perturbé},
url = {http://eudml.org/doc/114309},
volume = {9},
year = {1990-1991},
}

TY - JOUR
AU - Raikov, George D.
TI - L'asymptotique des valeurs propres pour l'opérateur de Schrödinger avec un potentiel périodique perturbé
JO - Séminaire de théorie spectrale et géométrie
PY - 1990-1991
PB - Institut Fourier
VL - 9
SP - 133
EP - 139
LA - fre
KW - asymptotic expansion; asymptotic value; number of eigenvalues
UR - http://eudml.org/doc/114309
ER -

References

top
  1. [AL-DE-HE] ALAMA S., DEIFT P.A., HEMPEL R. - Eigenvalue branches of the Schrödinger operator H - λW in a gap of σ(H), Commun. Math. Phys., 121 ( 1989), 291-321. Zbl0676.47032MR985401
  2. [DE-HE] DEIFT P.A., HEMPEL R. - On the existence of eigenvalues of the Schrödinger operator H - λW in a gap of σ(H), Commun. Math. Phys., 103 ( 1986), 461-490. Zbl0594.34022MR832922
  3. [GE-SI] GESZTESY F. , SIMON B. - On a theorem of Deift and Hempel, Commun. Math. Phys., 116 ( 1988), 503-505. Zbl0647.35063MR937772
  4. [HE] HEMPEL R. - Eigenvalue branches of the Schrödinger operator H ± λ,W in a spectral gap of H, J. Reine Angew. Math., 399 ( 1989), 38-59. Zbl0681.35066MR1004132
  5. [KHR] KHRYASHCHEV S.V. - Asymptotics cf the discrete spectrum of the perturbed Hill operator, Zap. Nauchn. Seminarov LOMI, 147 ( 1985), 188-189 (en russe); J. Sov. Math. 37 ( 1987) 908-909. Zbl0616.47039MR821486
  6. [ROZ] ROZENBLJUM G.V. - An asymptotic of the negative discrete spectrum of the Schrödinger operator, Mal. Zametki, 21 ( 1977). 399-407 (en russe); Math. Notes 21 ( 1977) 222-227. Zbl0399.35083MR447838
  7. [SKR] SKRIGANOV M.M. - Geometric and arithmetic methods in the spectral theory of multidimensional periodic operators, Trudy Mat. Inst. Steklov, 171 ( 1985), 122 pp. (en russe). Zbl0567.47004MR798454
  8. [TAM] TAMURA H. - Asymptotic formulas with sharp remainder estimates for bound states of Shrödinger operators, J. d'Anal. Maih. I:40 ( 1981), 166-182; 11:41 ( 1982) 85-108. Zbl0501.35063
  9. [WILC] WlLCOX C.H. - Theory of Bloch waves, J. d'Anal. Math., 33 ( 1978), 146-167. Zbl0408.35067MR516045
  10. [ZEL] ZELENKO L.B. - Asymptolic distribution of the eigenvalues in a lacuna of the continuous spectrum of a perturbed Hill operator, Mat. Zametki, 20 ( 1976), 341-350 (en russe); Math. Notes 20 ( 1976) 750-755. Zbl0357.34020MR430404

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.