The evolution of harmonic maps

Michael Struwe

Séminaire de théorie spectrale et géométrie (1991)

  • Volume: S9, page 133-141
  • ISSN: 1624-5458

How to cite

top

Struwe, Michael. "The evolution of harmonic maps." Séminaire de théorie spectrale et géométrie S9 (1991): 133-141. <http://eudml.org/doc/114338>.

@article{Struwe1991,
author = {Struwe, Michael},
journal = {Séminaire de théorie spectrale et géométrie},
keywords = {harmonic maps; heat flow},
language = {eng},
pages = {133-141},
publisher = {Institut Fourier},
title = {The evolution of harmonic maps},
url = {http://eudml.org/doc/114338},
volume = {S9},
year = {1991},
}

TY - JOUR
AU - Struwe, Michael
TI - The evolution of harmonic maps
JO - Séminaire de théorie spectrale et géométrie
PY - 1991
PB - Institut Fourier
VL - S9
SP - 133
EP - 141
LA - eng
KW - harmonic maps; heat flow
UR - http://eudml.org/doc/114338
ER -

References

top
  1. 1 F. Bethuel, J. M. Coron, J. M. Ghidaglia and A. Soyeur, "Heat flows and relaxed energies for harmonic maps", preprint ( 1990). Zbl0795.35053MR1167832
  2. 2 H. Brezis, J. M. Coron and E. Lieb, "Harmonic rnaps wilh defects", Comm. Math. Phys. 107 ( 1986), 649-705. Zbl0608.58016MR868739
  3. 3 K.-C. Chang, "Heat flow and boundary value problem for harmonic maps", preprint ( 1988). MR1030856
  4. 4 K.-C. Chang and W.-Y. Ding, "A result on global existence for heat flows of harmonic maps front D2 into S2", preprint ( 1989). 
  5. 5 Y. Chen, "Weak solutions to the evolution problems of harmonic maps", Math. Z. Zbl0685.58015MR990189
  6. 6 Y. Chen and W.-Y. Ding, "BIow-up and global existence for heat flows of harmonic maps", preprint. Zbl0674.58019MR1032880
  7. 7 Y. Chen and R. Musina, "Harmonic mappings into manifolds with boundary", preprint, Trieste ( 1989). Zbl0724.58023MR1079982
  8. 8 Y. Chen and M. Struwe, "Existence and partial regularity results for the heat flow for harmonic maps", Math. Z. 201 ( 1989), 83-103. Zbl0652.58024MR990191
  9. 9 X. Cheng, "Estimate of singular set of the evolution problem for harmonic maps", preprint, Rice Univ. ( 1990). Zbl0699.58028MR1114458
  10. 10 J.-M. Coron, "Nonuniqueness for the heat flow of harmonic maps", preprint ( 1988). MR1067779
  11. 11 J.-M. Coron and J.-M. Ghidaglia, "Explosion en temps fini pour le flot des applications harmoniques", preprint ( 1988). Zbl0679.58017MR992088
  12. 12 J. Eells and L. Lemaire, "A report on harmonic maps", Bull. London Math. Soc.10 ( 1978), 1-68. Zbl0401.58003MR495450
  13. 13 J. Eells and J. H. Sampson, "Harmonic mappings of Riemannian manifolds", Amer. J. Math. 86 ( 1964), 109-160. Zbl0122.40102MR164306
  14. 14 J. Eells and J.C. Wood, "Restrictions on harmonic maps of surfaces", Topology 15 ( 1976), 263-266. Zbl0328.58008MR420708
  15. 15 M. Giaquinta and E. Giusti, "On the regularity of the minima of variational integrals", Acta Math. 148 ( 1982), 31-46. Zbl0494.49031MR666107
  16. 16 M. Grayson and R. S. Hamilton, "The formation of singularities in the harmonic map heat flow", preprint. Zbl0872.58021MR1428088
  17. 17 R. S. Hamilton, "Harmonic maps of manifolds with boundary", Lect. Notes Math. 471, Springer, Berlin ( 1975). Zbl0308.35003MR482822
  18. 18 H. Horihata and N. Kikuchi, "A construction of solutions satisfying a Caccioppoli inequality for nonlinear parabolic equations associated to a variational functional of harmonic type", preprint. 
  19. 19 W. Jäger and H. Kaul, "Uniqueness and stability of harmonic maps, and their Jacobi fields", manusc. math. 28 ( 1979), 269-291. Zbl0413.31006MR535705
  20. 20 W. Jäger and H. Kaul, "Rotationally symmetric harmonic maps from a bail into a sphere and the regularity problem for weak solutions of elliptic systems", J. Reine Angew. Math. 343 ( 1983), 146-161. Zbl0516.35032MR705882
  21. 21 J. Jost, "Ein Existenzbeweis für harmonische Abbildungen, die ein Dirichletproblem lösen, mittels der Methode des Wärmeflusses", manusc. math. 34 ( 1981), 17-25. Zbl0459.58013MR614386
  22. 22 J. Keller, J. Rubinstein and P. Sternberg, "Reaction - diffusion processes and evolution to harmonic maps", preprint. Zbl0702.35128MR1025956
  23. 23 L. Lemaire, "Applications harmoniques de surfaces riemanniennes", J. Diff. Geom. 13 ( 1978), 51-78. Zbl0388.58003MR520601
  24. 24 M. Li, "Harmonic map heat flow with free boundary", preprint, Trieste ( 1990). Zbl0727.53044MR1107842
  25. 25 P. Li and L.-F. Tam, "The heat equation and harmonic maps of complete manifolds", preprint ( 1989). Zbl0748.58006MR1109619
  26. 26 F. H. Lin, "Une remarque sur l'application x/|x|", C.R. Acad. Sc. Paris 305 ( 1987), 529-531 Zbl0652.58022
  27. 27 J.C. Mitteau, "Sur les applications harmoniques", J. Diff. Geom. 9 ( 1974), 41-54. Zbl0281.35034MR345129
  28. 28 J. Moser, "A Harnack inequality for parabolic differential equations", Comm. Pure Appl. Math.17 ( 1964), 101-134. Zbl0149.06902MR159139
  29. 29 J. Sacks and K. Uhlenbeck, "The existence of minimal immersions of 2-spheres", Ann. of Math. 113 ( 1981), 1-24. Zbl0462.58014MR604040
  30. 30 R. S. Schoen and K. Uhlenbeck, "A regularity theory for harmonic maps", J. Diff Geom. 17 ( 1982), 307-335, and 18 ( 1983), 329. Zbl0521.58021MR664498
  31. 31 J. Shatah, "Weak solutions and the development of singularities of the SU(2)σ-model", Comm. Pure Appl. Math. 41 ( 1988), 459-469. Zbl0686.35081MR933231
  32. 32 T. Sideris, "Global existence of harmonic maps in Minkowski epace", Comm. Pure Appl. Math. 42 ( 1989), 1-13. Zbl0685.58016MR973742
  33. 33 M. Struwe, "On the evolution of harmonic maps of Riemannian surfaces". Comment. Math. Helv. 60 ( 1985), 558-581. Zbl0595.58013MR826871
  34. 34 M. Struwe, "The existence of surfaces of constant mean curvature with free boundaries", Acta Math. 160 ( 1988), 19-64. Zbl0646.53005MR926524
  35. 35 M. Struwe, "Heat flow methods for harmonic maps of surfaces and applications to free boundary problems", Lect. Notes Math. 1324, 293-319, Springer ( 1988) Zbl0651.53045MR965544
  36. 36 M. Struwe, "On the evolution of harmonic maps in higher dimensions", J. Diff. Geom. 28 ( 1988), 485-502. Zbl0631.58004MR965226
  37. 37 B. White, "Infima of energy fonction als in homotopy classes of mappings", J. Diff. Geom. 23 ( 1986). 127-142. Zbl0588.58017MR845702

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.