On the evolution of harmonic mappings of Riemannian surfaces.
Commentarii mathematici Helvetici (1985)
- Volume: 60, page 558-581
- ISSN: 0010-2571; 1420-8946/e
Access Full Article
topHow to cite
topStruwe, Michael. "On the evolution of harmonic mappings of Riemannian surfaces.." Commentarii mathematici Helvetici 60 (1985): 558-581. <http://eudml.org/doc/140031>.
@article{Struwe1985,
author = {Struwe, Michael},
journal = {Commentarii mathematici Helvetici},
keywords = {harmonic maps; Laplace-Beltrami operator; evolution problem; local Palais-Smale type compactness; energy functional; Sacks-Uhlenbeck results},
pages = {558-581},
title = {On the evolution of harmonic mappings of Riemannian surfaces.},
url = {http://eudml.org/doc/140031},
volume = {60},
year = {1985},
}
TY - JOUR
AU - Struwe, Michael
TI - On the evolution of harmonic mappings of Riemannian surfaces.
JO - Commentarii mathematici Helvetici
PY - 1985
VL - 60
SP - 558
EP - 581
KW - harmonic maps; Laplace-Beltrami operator; evolution problem; local Palais-Smale type compactness; energy functional; Sacks-Uhlenbeck results
UR - http://eudml.org/doc/140031
ER -
Citations in EuDML Documents
top- K. Hamdache, M. Tilioua, The Landau-Lifshitz equations and the damping parameter
- Fang Hua Lin, Solutions of Ginzburg-Landau equations and critical points of the renormalized energy
- Arina A. Arkhipova, Cauchy-Neumann problem for a class of nondiagonal parabolic systems with quadratic growth nonlinearities I. On the continuability of smooth solutions
- Arina A. Arkhipova, Cauchy-Neumann problem for a class of nondiagonal parabolic systems with quadratic nonlinearities II. Local and global solvability results
- Chang Kung-Ching, Heat flow and boundary value problem for harmonic maps
- Michael Struwe, The evolution of harmonic maps
- J.-M. Coron, Nonuniqueness for the heat flow of harmonic maps
- Yun Mei Chen, Roberta Musina, Harmonic mappings into manifolds with boundary
- Terence Tao, Geometric renormalization of large energy wave maps
- Fang Hua Lin, Chang You Wang, Harmonic and quasi-harmonic spheres, part III. Rectifiablity of the parabolic defect measure and generalized varifold flows
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.