An introduction to the completeness of compact semi-riemannian manifolds

Miguel Sánchez

Séminaire de théorie spectrale et géométrie (1994-1995)

  • Volume: 13, page 37-53
  • ISSN: 1624-5458

How to cite

top

Sánchez, Miguel. "An introduction to the completeness of compact semi-riemannian manifolds." Séminaire de théorie spectrale et géométrie 13 (1994-1995): 37-53. <http://eudml.org/doc/114380>.

@article{Sánchez1994-1995,
author = {Sánchez, Miguel},
journal = {Séminaire de théorie spectrale et géométrie},
keywords = {geodesic completeness; closed geodesics; Lorentzian tori; warped products; geodesic connectedness},
language = {eng},
pages = {37-53},
publisher = {Institut Fourier},
title = {An introduction to the completeness of compact semi-riemannian manifolds},
url = {http://eudml.org/doc/114380},
volume = {13},
year = {1994-1995},
}

TY - JOUR
AU - Sánchez, Miguel
TI - An introduction to the completeness of compact semi-riemannian manifolds
JO - Séminaire de théorie spectrale et géométrie
PY - 1994-1995
PB - Institut Fourier
VL - 13
SP - 37
EP - 53
LA - eng
KW - geodesic completeness; closed geodesics; Lorentzian tori; warped products; geodesic connectedness
UR - http://eudml.org/doc/114380
ER -

References

top
  1. [ARS] L.J. ALIAS, A. ROMERO, M. SÁNCHEZ. _ Uniqueness of complete spacelike hypersurfaces of constant mean curvature in generalized Robertson-Walker spacetimes, Gen. Rel. Grav. 27 ( 1995), 71-84. Zbl0908.53034MR1310212
  2. [Be1] J.K. BEEM. _ Some examples of incomplete spacetimes, Gen. Rel. Grav. 7 ( 1976), 501-509. Zbl0347.53027
  3. [Be2] J.K. BEEM. _ Disprisoning and pseudoconvex manifolds, Proceedings Symp. PureMath. 54 ( 1993), 19-26. Zbl0809.53068MR1216526
  4. [BeEh] J.K. BEEM, P.E. EHRLICH. _ Geodesic completeness and stability, Math. Proc. Camb. Phil. Soc. 102 ( 1987), 319-328. Zbl0643.53048MR898152
  5. [BePa1] J.K. BEEM, P.E. PARKER. _ The space of geodesics, Geom. Dedicata 38 ( 1991), 87-99. Zbl0789.58016MR1099923
  6. [BePa2] J.K. BEEM, P.E. PARKER. _ Whitney stability of solvability, Pac. J. Math. 116 ( 1985), 11-23. Zbl0572.58022MR769819
  7. [BFG] V. BENCI, D. FORTUNATO, F. GIANNONI. _ On the existence of multiple geodesics in static space-times, Ann. Inst. Henri Poincaré 81, n°l ( 1991), 79-102. Zbl0716.53057MR1094653
  8. [BFM] V. BENCI, D. FORTUNATO, A. MASIELLO. _ On the geodesic connectedeness of Lorentzian manifolds, Math. Z. 217 ( 1994), 73-93. Zbl0807.53054MR1292174
  9. [Ca] Y. CARRIÈRE. _ Autour de la conjecture de L. Markus sur les variétés affines, Invent. Math. 95 ( 1989), 615-628. Zbl0682.53051MR979369
  10. [CaRo] Y. CARRIÈRE, L. ROZOY. _ Complétude des métriques lorentziennes de T2 et difféomorphismes du cercle, Bol. Soc. Bras. Mat 25 ( 1994), 223-235. Zbl0822.53036MR1306563
  11. [CI] C.J.S. CLARKE. _ On the geodesic completeness of causal space-times, Proc. Cam. Phil. Soc. 69 ( 1971), 319-324. Zbl0208.24602MR270705
  12. [CoTu1] A.A. COLEY, B.O.J. TUPPER. _ Special conformal Killing vector space-times and symmetry inheritance, J. Math. Phys. 30 ( 1989), 2616-2625. Zbl0697.53069MR1019009
  13. [CoTu2] A.A. COLEY, B.O.J. TUPPER. _ Space-times admitting special affine conformai vectors, J. Math. Phys. 31 ( 1990), 649-652. Zbl0709.53014MR1039216
  14. [Dulh] D. DUNCAN, E. IHRIG. _ Incomplete flat homogeneous geometries, Proceedings Symp. PureMath. 54 Part 2 ( 1993), 197-202. Zbl0803.53033MR1216539
  15. [EIMM] D. EARDLEY, J. ISENBERG, J. MARSDEN, V. MONCRIEF. _ Homothetic and conformal symmetries of solutions to Einstein's equations, Commun. Math. Phys. 106 ( 1987), 137-158. Zbl0604.53038MR853981
  16. [EISc] G.F.R. ELLIS, B.G. SCHMIDT. _ Singulars pace-times, Gen. Rel. Grav. 7 ( 1977),915-953. Zbl0434.53048MR678992
  17. [FaKr] H.M. FARKAS, I. KRA _ Riemann Surfaces, GraduateTexts in Mathematics, Springer-Verlag, N.Y. Inc., 1992. Zbl0764.30001MR1139765
  18. [FGH] D. FRIED, W. GOLDMAN, M. HIRSCH. _ Affine manifolds with nilpotent holonomy, Comment Math. Helv. 56 ( 1975), 487-499. Zbl0516.57014MR656210
  19. [FMNEKTY] J. FRIEDMAN, M.S. MORRIS, I.D. NOVIKOV, F. ECHEVARRÍA, G. KLINKHAMMER, K.S. THORNE, U. YURTSEVER. _ Cauchy problem in spacetimes with a closed timelike curve, Phys. Rev. D 42 ( 1990),1915-1930. MR1069498
  20. [FrNo] V.P. FROLOV, I.D. NOVIKOV. _ Physical effects in wormholes and time machines, Phys. Rev. D 42 ( 1990), 1057-1065. MR1068845
  21. [FrSc] H. FRIEDRICH, B.G. SCHMIDT. _ Conformal geodesics in generai relativity, Proc. R. Soc. Lond. A 414 ( 1987), 171-195. Zbl0629.53063MR919722
  22. [FuAr] P.M.D. FURNESS, D.K. ARROWSMITH. _ Locally symmetrie spaces, J. London Math. Soc. 10 ( 1975), 487-499. Zbl0318.53049MR467598
  23. [FuFe] P.M.D. FURNESS, E. FEDIDA. _ Sur les structures pseudo-riemanniennes plates des variétés compactes, I. Nigerian Math. Soc. 5 ( 1986), 63-77. Zbl0684.53047MR1011620
  24. [Ga] G.J. GALLOWAY. _ Compact Lorentzian manifolds without closed non spacelike geodesics, Proc. Amer. Math. Soc. 98 ( 1986), 119-123. Zbl0601.53053MR848888
  25. [Ge] R.P. GEROCH. _ What is a singularity hi General Relativity?, Ann. Phys. 48 ( 1968), 526-540. Zbl0167.56501
  26. [Gi] F. GIANNONI. _ Geodesics on non static Lorentz manifolds of Reissner-Nordström type, Math. Ann. 291 ( 1991), 383-401. Zbl0725.53048MR1133338
  27. [GiMa] F. GIANNONI, A. MASSIELLO. _ Geodesics on Lorentzian manifolds with quasi-convex boundary, Manuscripta Math. 78 ( 1993), 381-396. Zbl0795.53062MR1208648
  28. (GoHi] W.M. GOLDMAN, M. HIRSCH. _ Affine manifolds and orbits of algebraic groups, Trans. Amer. Math. Soc. 295 ( 1986), 175-198. Zbl0591.57013MR831195
  29. [GuLa] M. GUEDIRI, J. LAFONTAINE. _ Sur le complétude des variétés pseudo-riemannienne, to appear in J. Geo m. Phys.. Zbl0818.53083
  30. [HaEl] S.W. HAWKING, G.F.R. ELLIS. _ The large scale structure of space time, Cambridge Monographs in Mathematical Physics, Cambridge Univ. Press, 1973. Zbl0265.53054MR424186
  31. [Har] S.G. HARRIS. _ Conformally stationary spacetimes, Class. Quantum Grav., 1992,1823-1827. Zbl0774.53027MR1173295
  32. [Haw] S.W. HAWKING. _ The chronology protection conjecture, Phys. Rev. D 46 ( 1992), 603-611. MR1172250
  33. [Ka] Y. KAMISHIMA. _ Completeness of Lorentz manifolds of constant curvature admitting Kiilingvector fields, J. Differential Geometry 37 ( 1993), 569-601. Zbl0792.53061MR1217161
  34. [KoNo] S. KOBAYASHI, K. NOMIZU. _ Foundations of differential geometry, vol. 1, Wiley Inters. N.Y, 1963. Zbl0119.37502MR152974
  35. [Kul] R.S. KULKARNI._ An analogue to the Riemann mapping theorem for Lorentz metrics, Proc. Royal Soc. London 401 ( 1985), 117-130. Zbl0574.53040MR807317
  36. [Kun] W. KUNDT. _ Note on the completeness of spacetimes, Zs. f. Phys. 172 ( 1963), 488-489. Zbl0107.43903MR149929
  37. [La] J. LAFUENTE LÖPEZ. _ A geodesic completeness theorem for locally symmetrie Lorentz manifolds, Rev. Mat. Univ. Complutense Madrid 1 ( 1988), 101-110. Zbl0658.53058MR977043
  38. [Lo] R.J. LOW. _ The geometry of the space of null geodesics, J. Math. Phys. 30 ( 1989), 809-811. Zbl0677.53070MR987112
  39. [Ma] J.E. MARSDEN. _ On completeness of homogeneous pseudo-Riemannian manifolds, Indiana Univ. Math. J. 22 ( 1973), 1065-1066. Zbl0242.53026MR319128
  40. [NoOz] K. NOMIZU, H. OZEKI. _ The existence of complete Riemannian metrics, Proc. Amer. Math. Soc. 12 ( 1961), 889-891. Zbl0102.16401MR133785
  41. [On] B. O'NEILL. _ Semi-Riemannian geometry with applications to relativity, Academic Press, N.Y, 1983. Zbl0531.53051MR719023
  42. [RoSa1] A. ROMERO, M. SÁNCHEZ. _ On the completeness of geodesics obtained as a limit, J. Math. Phys. 341 n°8 ( 1993), 3768-3774. Zbl0783.53037MR1230550
  43. [RoSa2] A. ROMERO, M. SÀNCHEZ. _ New properties and examples of incomplete Lorentzian tori, J. Math. Phys. 35 n°4 ( 1994), 1992-1997. Zbl0813.53041MR1267937
  44. [RoSa3] A. ROMERO, M. SÀNCHEZ. _ On the completeness of certain families of semi-Riemannian manifolds, Geom. Dedicata 53 ( 1994), 103-117. Zbl0813.53040MR1299888
  45. [RoSa4] A. ROMERO, M. SÀNCHEZ. _ Completeness of compact Lorentz manifolds admitting a time like conformal Killling vector field, to appear in Proc. Amer. Math. Soc. Zbl0853.53046MR1257122
  46. [RoSa5] A. ROMERO, M. SÀNCHEZ. _ On completeness of compact Lorentzian manifolds, Series on Geometry and Topology, Vol. 6, World Scientific Publishing Co., 1994. Zbl0842.53045MR1315099
  47. [RoSa6] A. ROMERO, M. SÀNCHEZ. _ An integral inequality on compact Lorentz manifolds and its applications, to appear in Bull. London Math. Soc. Zbl0855.53042MR1396153
  48. [Sa1] M. SÀNCHEZ. _ Completitud geodésica de variedades compactas semi-riemannianas, Tesis Doctoral, Granada, Mayo 1994. 
  49. [Sa2] M. SÀNCHEZ. _ Structure of Lorentzion ton with a küling vector field, preprint, Universidad de Granada, 1995. 
  50. [Sa3] M. SÀNCHEZ. _ A new Avez-Seifert type resùlt for geodesics in generalized Reissner-Nordström spacetimes, preprint, Universidad de Granada, 1995. 
  51. [SaWu] R.K. SACHS, H. WU. _ General Relativity for Mathematicians, Graduate Texts in Mathematics, Springer-Verlag, N.Y. Inc., 1977. Zbl0373.53001MR503498
  52. [Se] H.J. SEIFERT. _ The causal boundary of space-times, Gen. Rel. Grav. 1 ( 1971), 247-259. Zbl0336.53046MR391871
  53. [Yu] U. YURTSEVER. _ Test üelds on compact space-times, J. Math. Phys. 31 ( 1990), 3064-3078. Zbl0723.53062MR1079255

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.