On the existence of multiple geodesics in static space-times

V. Benci; D. Fortunato; F. Giannoni

Annales de l'I.H.P. Analyse non linéaire (1991)

  • Volume: 8, Issue: 1, page 79-102
  • ISSN: 0294-1449

How to cite

top

Benci, V., Fortunato, D., and Giannoni, F.. "On the existence of multiple geodesics in static space-times." Annales de l'I.H.P. Analyse non linéaire 8.1 (1991): 79-102. <http://eudml.org/doc/78246>.

@article{Benci1991,
author = {Benci, V., Fortunato, D., Giannoni, F.},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {static space-time; Lorentz metrics; critical point theory; asymptotically flat spacetimes; geodesics},
language = {eng},
number = {1},
pages = {79-102},
publisher = {Gauthier-Villars},
title = {On the existence of multiple geodesics in static space-times},
url = {http://eudml.org/doc/78246},
volume = {8},
year = {1991},
}

TY - JOUR
AU - Benci, V.
AU - Fortunato, D.
AU - Giannoni, F.
TI - On the existence of multiple geodesics in static space-times
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 1991
PB - Gauthier-Villars
VL - 8
IS - 1
SP - 79
EP - 102
LA - eng
KW - static space-time; Lorentz metrics; critical point theory; asymptotically flat spacetimes; geodesics
UR - http://eudml.org/doc/78246
ER -

References

top
  1. [1] S.I. Alber, The Topology of Functional Manifolds and the Calculus of Variations in the Large, Russian Math. Surv., Vol. 25, 1970, p. 51-117. Zbl0222.58002MR279832
  2. [2] A. Avez, Essais de géométrie Riemanniene hyperbolique: Applications to the relativité générale, Inst. Fourier, Vol. 132, 1963, p. 105-190. Zbl0188.54801MR167940
  3. [3] P. Bartolo, V. Benci, and D. Fortunato, Abstract Critical Point Theorems and Applications to Some Nonlinear Problems with "Strong Resonance" at Infinity,Nonlinear Anal. T.M.A., Vol. 7, 1983, pp. 981-1012. Zbl0522.58012MR713209
  4. [4] J.K. Beem and P. Erlich, Global LorentzianGeometry, M. Dekker, Pure Appl. Math., Vol. 67, 1981. Zbl0462.53001MR619853
  5. [5] V. Benci, Periodic Solutions of Lagrangian Systems on Compact Manifold, J. Diff. Eq., Vol. 63, 1986, pp. 135-161. Zbl0605.58034MR848265
  6. [6] V. Benci and D. Fortunato, Existence of Geodesics for the Lorentz Metric of a Stationary Gravitational Field, Ann. Inst. H. Poincaré, Anal. non linéaire, Vol. 7, 1990, pp. 27-35. Zbl0697.58011MR1046082
  7. [7] V. Benci and D. Fortunato, Periodic Trajectories for the Lorentz Metric of a Static Gravitational Field, Proc. on "Variational Problems", Paris, June 1988 (to appear). Zbl0719.58009MR1205170
  8. [8] V. Benci and D. Fortunato, On the Existence of Infinitely Many Geodesics on Space-Time Manifolds, preprint, Dip. Mat. Univ.Bari, 1989. Zbl0808.58016MR1275190
  9. [9] V. Benci, D. Fortunato and F. Giannoni, On the Existence of Geodesics in Static Lorentz Manifolds with Nonsmooth Boundary, preprint. Ist. Mat. Appl. Univ.Pisa. Zbl0737.53059
  10. [10] A. Canino, On p-convex Sets and Geodesics, J. Diff. Eq., Vol. 75, 1988, pp. 118-157. Zbl0661.34042MR957011
  11. [11] G. Galloway, Closed Timelike Geodesics, Trans. Am. Math. Soc., Vol. 285, 1984, pp. 379-388. Zbl0547.53033MR748844
  12. [12] G. Galloway, Compact Lorentzian Manifolds Without Closed Nonspacelike Geodesics, Proc. Am. Math. Soc., Vol. 98, 1986, pp. 119-124. Zbl0601.53053MR848888
  13. [13] C. Greco, Periodic Trajectories for a Class of Lorentz Metrics of a Time-Dependent Gravitational Field, preprint, Dip. Mat. Univ.Bari, 1989. MR1060690
  14. [14] C. Greco, Periodic Trajectories in Static Space-Times, preprint, Dip. Mat. Univ.Bari, 1989. Zbl0691.53052MR1025457
  15. [15] S.W. Hawking and G.F. Ellis, The Large Scale Structure of Space Time, Cambridge Univ. Press, 1973. Zbl0265.53054MR424186
  16. [16] J. Milnor, Morse Theory, Ann. Math. Studies, Vol. 51, Princeton Univ. Press, 1963. Zbl0108.10401
  17. [17] J. Nash, The Embedding Problem for Riemannian Manifolds, Ann. Math., Vol. 63, 1956, pp. 20-63. Zbl0070.38603MR75639
  18. [18] B. O'Neil, Semi-Riemannian Geometry with Applications to relativity, Academic Press Inc., New York-London, 1983. Zbl0531.53051
  19. [19] R.S. Palais, Critical Point Theory and the Minimax Principle, Global Anal., Proc. Sym. "Pure Math.", Vol. 15, Amer. Math. Soc., 1970, pp. 185-202. Zbl0212.28902MR264712
  20. [20] R.S. Palais, Morse Theory on Hilbert Manifolds, Topology, Vol. 22, 1963, pp. 299- 340. Zbl0122.10702MR158410
  21. [21] R. Penrose, Techniques of Differential Topology in Relativity, Conf. Board Math. Sci., Vol. 7, S.I.A.M., Philadelphia, 1972. Zbl0321.53001MR469146
  22. [22] P.H. Rabinovitz, Minimax Methods in Critical Point Theory with Applications to Differential Equations, Reg. Conf. Series, Am. Math. Soc., Vol. 65, 1986. Zbl0609.58002MR845785
  23. [23] J.T. Schwartz, Nonlinear Functional Analysis, Gordon and Breach, New York, 1969. Zbl0203.14501MR433481
  24. [24] H.J. Seifert, Global Connectivity by Time-Like Geodesics, Z. Natureforsch, Vol. 22 a, 1970, pp. 1356-1360. Zbl0163.43701MR225556
  25. [25] J.P. Serre, Homologie singulière des espaces fibres, Ann. Math., Vol. 54, 1951, pp. 425- 505. Zbl0045.26003MR45386
  26. [26] F. Tripler, Existence of Closed Time-Like Geodesics in Lorentz Spaces, Proc. Am. Math. Soc., Vol. 76, 1979, pp. 145-147. Zbl0387.53024
  27. [27] K. Uhlenbeck, A Morse Theory for Geodesics on a Lorentz Manifold, Topology, Vol. 14, 1975, pp. 69-90. Zbl0323.58010MR383461
  28. [28] M. Vigue-Poirier and D. Sullivan, The Homology Theory of the Closed Geodesic Problem, J. Diff. Geom., Vol. 11, 1979, pp. 633-644. Zbl0361.53058MR455028

Citations in EuDML Documents

top
  1. Carlo Greco, The Dirichlet-problem for harmonic maps from the disk into a lorentzian warped product
  2. Vieri Benci, Donato Fortunato, Fabio Giannoni, Some results on the existence of geodesics in static Lorentz manifolds with singular boundary
  3. Carlo Greco, Infinitely many spacelike periodic trajectories on a class of Lorentz manifolds
  4. V. Benci, D. Fortunato, F. Giannoni, On the existence of geodesics in static Lorentz manifolds with singular boundary
  5. Miguel Sánchez, An introduction to the completeness of compact semi-riemannian manifolds

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.