On the existence of multiple geodesics in static space-times
V. Benci; D. Fortunato; F. Giannoni
Annales de l'I.H.P. Analyse non linéaire (1991)
- Volume: 8, Issue: 1, page 79-102
- ISSN: 0294-1449
Access Full Article
topHow to cite
topBenci, V., Fortunato, D., and Giannoni, F.. "On the existence of multiple geodesics in static space-times." Annales de l'I.H.P. Analyse non linéaire 8.1 (1991): 79-102. <http://eudml.org/doc/78246>.
@article{Benci1991,
author = {Benci, V., Fortunato, D., Giannoni, F.},
journal = {Annales de l'I.H.P. Analyse non linéaire},
keywords = {static space-time; Lorentz metrics; critical point theory; asymptotically flat spacetimes; geodesics},
language = {eng},
number = {1},
pages = {79-102},
publisher = {Gauthier-Villars},
title = {On the existence of multiple geodesics in static space-times},
url = {http://eudml.org/doc/78246},
volume = {8},
year = {1991},
}
TY - JOUR
AU - Benci, V.
AU - Fortunato, D.
AU - Giannoni, F.
TI - On the existence of multiple geodesics in static space-times
JO - Annales de l'I.H.P. Analyse non linéaire
PY - 1991
PB - Gauthier-Villars
VL - 8
IS - 1
SP - 79
EP - 102
LA - eng
KW - static space-time; Lorentz metrics; critical point theory; asymptotically flat spacetimes; geodesics
UR - http://eudml.org/doc/78246
ER -
References
top- [1] S.I. Alber, The Topology of Functional Manifolds and the Calculus of Variations in the Large, Russian Math. Surv., Vol. 25, 1970, p. 51-117. Zbl0222.58002MR279832
- [2] A. Avez, Essais de géométrie Riemanniene hyperbolique: Applications to the relativité générale, Inst. Fourier, Vol. 132, 1963, p. 105-190. Zbl0188.54801MR167940
- [3] P. Bartolo, V. Benci, and D. Fortunato, Abstract Critical Point Theorems and Applications to Some Nonlinear Problems with "Strong Resonance" at Infinity,Nonlinear Anal. T.M.A., Vol. 7, 1983, pp. 981-1012. Zbl0522.58012MR713209
- [4] J.K. Beem and P. Erlich, Global LorentzianGeometry, M. Dekker, Pure Appl. Math., Vol. 67, 1981. Zbl0462.53001MR619853
- [5] V. Benci, Periodic Solutions of Lagrangian Systems on Compact Manifold, J. Diff. Eq., Vol. 63, 1986, pp. 135-161. Zbl0605.58034MR848265
- [6] V. Benci and D. Fortunato, Existence of Geodesics for the Lorentz Metric of a Stationary Gravitational Field, Ann. Inst. H. Poincaré, Anal. non linéaire, Vol. 7, 1990, pp. 27-35. Zbl0697.58011MR1046082
- [7] V. Benci and D. Fortunato, Periodic Trajectories for the Lorentz Metric of a Static Gravitational Field, Proc. on "Variational Problems", Paris, June 1988 (to appear). Zbl0719.58009MR1205170
- [8] V. Benci and D. Fortunato, On the Existence of Infinitely Many Geodesics on Space-Time Manifolds, preprint, Dip. Mat. Univ.Bari, 1989. Zbl0808.58016MR1275190
- [9] V. Benci, D. Fortunato and F. Giannoni, On the Existence of Geodesics in Static Lorentz Manifolds with Nonsmooth Boundary, preprint. Ist. Mat. Appl. Univ.Pisa. Zbl0737.53059
- [10] A. Canino, On p-convex Sets and Geodesics, J. Diff. Eq., Vol. 75, 1988, pp. 118-157. Zbl0661.34042MR957011
- [11] G. Galloway, Closed Timelike Geodesics, Trans. Am. Math. Soc., Vol. 285, 1984, pp. 379-388. Zbl0547.53033MR748844
- [12] G. Galloway, Compact Lorentzian Manifolds Without Closed Nonspacelike Geodesics, Proc. Am. Math. Soc., Vol. 98, 1986, pp. 119-124. Zbl0601.53053MR848888
- [13] C. Greco, Periodic Trajectories for a Class of Lorentz Metrics of a Time-Dependent Gravitational Field, preprint, Dip. Mat. Univ.Bari, 1989. MR1060690
- [14] C. Greco, Periodic Trajectories in Static Space-Times, preprint, Dip. Mat. Univ.Bari, 1989. Zbl0691.53052MR1025457
- [15] S.W. Hawking and G.F. Ellis, The Large Scale Structure of Space Time, Cambridge Univ. Press, 1973. Zbl0265.53054MR424186
- [16] J. Milnor, Morse Theory, Ann. Math. Studies, Vol. 51, Princeton Univ. Press, 1963. Zbl0108.10401
- [17] J. Nash, The Embedding Problem for Riemannian Manifolds, Ann. Math., Vol. 63, 1956, pp. 20-63. Zbl0070.38603MR75639
- [18] B. O'Neil, Semi-Riemannian Geometry with Applications to relativity, Academic Press Inc., New York-London, 1983. Zbl0531.53051
- [19] R.S. Palais, Critical Point Theory and the Minimax Principle, Global Anal., Proc. Sym. "Pure Math.", Vol. 15, Amer. Math. Soc., 1970, pp. 185-202. Zbl0212.28902MR264712
- [20] R.S. Palais, Morse Theory on Hilbert Manifolds, Topology, Vol. 22, 1963, pp. 299- 340. Zbl0122.10702MR158410
- [21] R. Penrose, Techniques of Differential Topology in Relativity, Conf. Board Math. Sci., Vol. 7, S.I.A.M., Philadelphia, 1972. Zbl0321.53001MR469146
- [22] P.H. Rabinovitz, Minimax Methods in Critical Point Theory with Applications to Differential Equations, Reg. Conf. Series, Am. Math. Soc., Vol. 65, 1986. Zbl0609.58002MR845785
- [23] J.T. Schwartz, Nonlinear Functional Analysis, Gordon and Breach, New York, 1969. Zbl0203.14501MR433481
- [24] H.J. Seifert, Global Connectivity by Time-Like Geodesics, Z. Natureforsch, Vol. 22 a, 1970, pp. 1356-1360. Zbl0163.43701MR225556
- [25] J.P. Serre, Homologie singulière des espaces fibres, Ann. Math., Vol. 54, 1951, pp. 425- 505. Zbl0045.26003MR45386
- [26] F. Tripler, Existence of Closed Time-Like Geodesics in Lorentz Spaces, Proc. Am. Math. Soc., Vol. 76, 1979, pp. 145-147. Zbl0387.53024
- [27] K. Uhlenbeck, A Morse Theory for Geodesics on a Lorentz Manifold, Topology, Vol. 14, 1975, pp. 69-90. Zbl0323.58010MR383461
- [28] M. Vigue-Poirier and D. Sullivan, The Homology Theory of the Closed Geodesic Problem, J. Diff. Geom., Vol. 11, 1979, pp. 633-644. Zbl0361.53058MR455028
Citations in EuDML Documents
top- Carlo Greco, The Dirichlet-problem for harmonic maps from the disk into a lorentzian warped product
- Vieri Benci, Donato Fortunato, Fabio Giannoni, Some results on the existence of geodesics in static Lorentz manifolds with singular boundary
- Carlo Greco, Infinitely many spacelike periodic trajectories on a class of Lorentz manifolds
- V. Benci, D. Fortunato, F. Giannoni, On the existence of geodesics in static Lorentz manifolds with singular boundary
- Miguel Sánchez, An introduction to the completeness of compact semi-riemannian manifolds
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.