Comparaison de spectres d'opérateurs de type Schrödinger et Dirac

Manlio Bordoni

Séminaire de théorie spectrale et géométrie (1995-1996)

  • Volume: 14, page 69-81
  • ISSN: 1624-5458

How to cite

top

Bordoni, Manlio. "Comparaison de spectres d'opérateurs de type Schrödinger et Dirac." Séminaire de théorie spectrale et géométrie 14 (1995-1996): 69-81. <http://eudml.org/doc/114395>.

@article{Bordoni1995-1996,
author = {Bordoni, Manlio},
journal = {Séminaire de théorie spectrale et géométrie},
keywords = {Fubini inequality; Kato inequality; spectrum},
language = {fre},
pages = {69-81},
publisher = {Institut Fourier},
title = {Comparaison de spectres d'opérateurs de type Schrödinger et Dirac},
url = {http://eudml.org/doc/114395},
volume = {14},
year = {1995-1996},
}

TY - JOUR
AU - Bordoni, Manlio
TI - Comparaison de spectres d'opérateurs de type Schrödinger et Dirac
JO - Séminaire de théorie spectrale et géométrie
PY - 1995-1996
PB - Institut Fourier
VL - 14
SP - 69
EP - 81
LA - fre
KW - Fubini inequality; Kato inequality; spectrum
UR - http://eudml.org/doc/114395
ER -

References

top
  1. [B] BORDONI M. - Spectral estimates for Schrödinger and Dirac-type operators on Riemannian manifolds, Math. Ann. 298 ( 1994). 693-718. Zbl0791.58094MR1268600
  2. [B-Z] BURAGO YU. D., ZALGALLER V. A. - Geometric inequalities, Grundlehren der math. Wiss., Springer Verlag, 285, 1988. Zbl0633.53002MR936419
  3. [F] FRIEDRICH T. - Der erste Eigenwert des Dirac Operators einer kompakten Riemannschen Manigfaltigkeit nichtnegativer Skalar-Krümmung. Math. Nachr. 97 ( 1980), 117-146. Zbl0462.53027MR600828
  4. [G-M1] GALLOT S., MEYER D. - Opérateur de courbure et laplaciens des formes différentielles d'une variété riemannienne, J.Math. Pures Appl. 54 ( 1975), 259-284. Zbl0316.53036MR454884
  5. [G-M2] GALLOT S., MEYER D. - D'un résultat hilbertien à un principe de comparaison entre spectres-applications, Ann. Sci. Éc. Norm. Sup., IV série 21 ( 1988), 561-591. Zbl0722.53037MR982334
  6. [H-S-U] HESS H., SCHRADER R., UHLENBROCK D. A. - Kato's inequality and the spectral distribution of Laplacian on compact Riemannian manifolds, J. Diff. Geom. 15 ( 1986), 27-38. Zbl0442.58032MR602436
  7. [H] HIJAZI O. - A conformal lower bound for the smallest eigenvalue of the Dirac operator and Killing spinors, Commun. Math. Phys. 104 ( 1986), 151-162. Zbl0593.58040MR834486
  8. [K] KIRCHBERG K. D. - An estimation for the first eigenvalue of the Dirac operator on closed Kähler manifolds with positive scalar curvature, Ann. Glob. Anal. Geom. 4 ( 1986), 291-326. Zbl0629.53058MR910548
  9. [L-M] LAWSON H. B., MICHELSON M. L. - Spin Geometry, Princeton University Press, Princeton, N. J., 1989. Zbl0688.57001MR1031992
  10. [L] LICHNEROWICZ A. - Spineurs harmoniques, C.R. Acad. Sci. Paris, Série 1257 ( 1963), 7-9. Zbl0136.18401MR156292

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.