Circle-packing connections with random walks and a finite volume method

Tomasz Dubejko

Séminaire de théorie spectrale et géométrie (1996-1997)

  • Volume: 15, page 153-161
  • ISSN: 1624-5458

How to cite


Dubejko, Tomasz. "Circle-packing connections with random walks and a finite volume method." Séminaire de théorie spectrale et géométrie 15 (1996-1997): 153-161. <>.

author = {Dubejko, Tomasz},
journal = {Séminaire de théorie spectrale et géométrie},
keywords = {simplicial complex; survey; circle packings; triangulations; Dirichlet problem; random walks},
language = {eng},
pages = {153-161},
publisher = {Institut Fourier},
title = {Circle-packing connections with random walks and a finite volume method},
url = {},
volume = {15},
year = {1996-1997},

AU - Dubejko, Tomasz
TI - Circle-packing connections with random walks and a finite volume method
JO - Séminaire de théorie spectrale et géométrie
PY - 1996-1997
PB - Institut Fourier
VL - 15
SP - 153
EP - 161
LA - eng
KW - simplicial complex; survey; circle packings; triangulations; Dirichlet problem; random walks
UR -
ER -


  1. [BeSc] I. BENJAMINI and O. SCHRAMM. - Harmonic fonctions on planar and almost planar graphs and manifolds, via circlepackings. Invent. Math. 126 ( 1996), 565-587. Zbl0868.31008
  2. [BoSt] P. L. BOWERS and K. STEPHENSON. - A branched Andreev-Thurston theorem for circle packings on the sphere, Proc. London Math. Soc. 73( 1996), 185-215. Zbl0856.51012
  3. [BR] R. E. BANK and D. J. ROSÉ. - Some error estimates for the box method, SIAM J. Numer. Anal. 24 ( 1987), 777-787. Zbl0634.65105
  4. [BSt1] A. F. BEARDON and K. STEPHENSON. - The uniformization theorem for circle packings, Indiana Univ. Math. J. 39 ( 1990), 1383-1425. Zbl0797.30008MR1087197
  5. [BSt2] A. F. BEARDON and K. STEPHENSON.- The Schwarz-Pick lemma for circle packings, 111. J. Math. 141 ( 1991), 577-606. Zbl0753.30016MR1115988
  6. [C] Z. CAL - On the unite volume element method, Numer. Math. 58 ( 1991), 713-735. Zbl0731.65093MR1090257
  7. [CdV] Y. COLIN DE VERDIÈRE. - Un principe variationnel pour les empilements de cercles, Invent. Math. 104 ( 1991), 655-669. Zbl0745.52010MR1106755
  8. [CdVMa] Y. COLIN DE VERDIÈRE and F. MATHÉUS. - Empilements de cercles et approximations conformes, Actes de la Table Ronde de Géométrie Riemannienne en l'honneur de Marcel Berger, A. L. Besse (éditeur), Collection SMF Séminaires et Congrès 1 ( 1996), 253-272. Zbl0932.52004MR1427761
  9. [CMM] Z. CAI, J. MANDEL and S. MCCORMICK. - The finite volume element method for diffusion equations on general triangulations, SIAM J. Numer. Anal. 28 ( 1991), 392-402. Zbl0729.65086MR1087511
  10. [De] D. R. DEBAUN.- L2-cohomology of noncompact surfaces, Proc. Amer. Math. Soc. 284 ( 1984), 543-565. Zbl0511.58002MR743732
  11. [DoSn] P. DOYLE and J. SNELL. - Random walks and electric networks, Carus Mathematica! Monographs, 22, MAA, 1984. Zbl0583.60065MR920811
  12. [D1] T. DUBEJKO. - Branched circle packings and discrete Blaschke products, Trans. Amer. Math. Soc. 347 ( 1995). 4073-1103. Zbl0849.30028MR1308008
  13. [D2] T. DUBEJKO. - Recurrent random walks, Liouville's theorem, and circle packing, Math. Proc. Cambridge Philos. Soc. 121 ( 1997), 531-546. Zbl0888.30005MR1434659
  14. [D3] T. DUBEJKO. - Random walks on circle packings, (Math Sci Res Inst preprint #066-95), Contemp. Math., (to appear). Zbl0898.60072MR1476986
  15. [D4] T. DUBEJKO. - Discrete solutions of Dirichlet problems, finite volumes, and circle packings, preprint. Zbl0945.30004MR1692623
  16. [ECH] R. EYMARD, T. GALLOUËT and R. HERBIN. - Finite Volume Methods, in preparation for the Handbook of Numerical Analysis, Ph. Ciarlet and J. L. Lions eds. Zbl0981.65095
  17. [Ha] W. HACKBUSCH. - On first and second order box schemes, Computing 41 ( 1989), 277-296. Zbl0649.65052MR993825
  18. [Hn] B. HEINRICH. - Finite difference methods on irregular networks, Birkhäuser-Verlag, 1987. Zbl0623.65096MR875416
  19. [HSc1] Z.-X. HE and O. SCHRAMM. - Fixed points, Koebe uniformization and circle packings, Ann. of Math. 137 ( 1993). 369-406. Zbl0777.30002MR1207210
  20. [HSc2] Z.-X. HE and O. SCHRAMM. - Hyperbolic and parabolic packings, Discrete and Comput. Geom. 14 (95). 123-149. Zbl0830.52010MR1331923
  21. [HSc3] Z.-X. HE and O. SCHRAMM. - On convergence of circle packings to the Riemann map, Invent. Math. 125 ( 1996), 285-305. Zbl0868.30010MR1395721
  22. [HR] Z.-X. HE and B. RODIN. - Convergence of circle packings of finite valence to Riemann mappings, Comm. in Analysis and Geometry 1 ( 1993), 31-41. Zbl0777.30003MR1230272
  23. [Ma] F. MATHÉUS. - Empilements de cercles et discrétisation quasiconforme: comportement asymptotique des rayons. preprint. Zbl0930.30011MR1692619
  24. [Mc] G. MCCAUGHAN. - A recurrence/transience resuit for circle packings, Proc. Amer. Math. Soc, (to appear). Zbl0912.30002MR1327026
  25. [RS] B. RODIN and D. SULLIVAN. - The convergence of circle packings to the Riemann mapping, J. Differential Geom. 26 ( 1987). 349-360. Zbl0694.30006MR906396
  26. [S] P. M. SOARDI. - Potential theory on infinite networks, Lecture notes in mathematics, 1590, Springer-Verlag, 1994. Zbl0818.31001MR1324344
  27. [St1] K. STEPHENSON. - Circle packings in the approximation of conformal mappings, Bull. Amer. Math. Soc. (Research Announcements) 23, (2) ( 1990), 407-115. Zbl0714.30011MR1049434
  28. [St2] K. STEPHENSON. - A probabilistic proof of Thurston's conjecture on circle packings, Rend. Sem. Mat. Fis. Milano, (to appear). Zbl0997.60504MR1639851
  29. [St3] K. STEPHENSON. - CirclePack (software), 
  30. [Th1] W.P. THURSTON. - The Geometry and Topology of 3-ManifoIds, Princeton University Notes, Princeton University Press, 1980. 
  31. [Th2] W.P. THURSTON. - The finite Riemann mapping theorem, Invited talk, An International Symposium at Purdue University on the occasion of the proof of the Bieberbach conjecture, March 1985. 
  32. [W] W. WOESS. - Random walks on infinite graphs and groups - a survey on selected topics, Bull. London Math. Soc. 26 ( 1994), 1-60. Zbl0830.60061MR1246471

NotesEmbed ?


You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.


Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.