Page 1 Next

Displaying 1 – 20 of 661

Showing per page

𝐴 - 𝑃𝑂𝑆𝑇𝐸𝑅𝐼𝑂𝑅𝐼 error estimates for linear exterior problems 𝑉𝐼𝐴 mixed-FEM and DtN mappings

Mauricio A. Barrientos, Gabriel N. Gatica, Matthias Maischak (2002)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

In this paper we combine the dual-mixed finite element method with a Dirichlet-to-Neumann mapping (given in terms of a boundary integral operator) to solve linear exterior transmission problems in the plane. As a model we consider a second order elliptic equation in divergence form coupled with the Laplace equation in the exterior unbounded region. We show that the resulting mixed variational formulation and an associated discrete scheme using Raviart-Thomas spaces are well posed, and derive the...

A brief review of some application driven fast algorithms for elliptic partial differential equations

Prabir Daripa (2012)

Open Mathematics

Some application driven fast algorithms developed by the author and his collaborators for elliptic partial differential equations are briefly reviewed here. Subsequent use of the ideas behind development of these algorithms for further development of other algorithms some of which are currently in progress is briefly mentioned. Serial and parallel implementation of these algorithms and their applications to some pure and applied problems are also briefly reviewed.

A comparison of the accuracy of the finite-difference solution to boundary value problems for the Helmholtz equation obtained by direct and iterative methods

Václav Červ, Karel Segeth (1982)

Aplikace matematiky

The development of iterative methods for solving linear algebraic equations has brought the question of when the employment of these methods is more advantageous than the use of the direct ones. In the paper, a comparison of the direct and iterative methods is attempted. The methods are applied to solving a certain class of boundary-value problems for elliptic partial differential equations which are used for the numerical modeling of electromagnetic fields in geophysics. The numerical experiments...

A counterexample to the L p -Hodge decomposition

Piotr Hajłasz (1996)

Banach Center Publications

We construct a bounded domain Ω 2 with the cone property and a harmonic function on Ω which belongs to W 0 1 , p ( Ω ) for all 1 ≤ p < 4/3. As a corollary we deduce that there is no L p -Hodge decomposition in L p ( Ω , 2 ) for all p > 4 and that the Dirichlet problem for the Laplace equation cannot be in general solved with the boundary data in W 1 , p ( Ω ) for all p > 4.

A finite element method for domain decomposition with non-matching grids

Roland Becker, Peter Hansbo, Rolf Stenberg (2003)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

In this note, we propose and analyse a method for handling interfaces between non-matching grids based on an approach suggested by Nitsche (1971) for the approximation of Dirichlet boundary conditions. The exposition is limited to self-adjoint elliptic problems, using Poisson’s equation as a model. A priori and a posteriori error estimates are given. Some numerical results are included.

A finite element method for domain decomposition with non-matching grids

Roland Becker, Peter Hansbo, Rolf Stenberg (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

In this note, we propose and analyse a method for handling interfaces between non-matching grids based on an approach suggested by Nitsche (1971) for the approximation of Dirichlet boundary conditions. The exposition is limited to self-adjoint elliptic problems, using Poisson's equation as a model. A priori and a posteriori error estimates are given. Some numerical results are included.

A finite element method on composite grids based on Nitsche’s method

Anita Hansbo, Peter Hansbo, Mats G. Larson (2003)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

In this paper we propose a finite element method for the approximation of second order elliptic problems on composite grids. The method is based on continuous piecewise polynomial approximation on each grid and weak enforcement of the proper continuity at an artificial interface defined by edges (or faces) of one the grids. We prove optimal order a priori and energy type a posteriori error estimates in 2 and 3 space dimensions, and present some numerical examples.

Currently displaying 1 – 20 of 661

Page 1 Next