Inégalité de Wente et ses applications aux H -surfaces

Yuxin Ge

Séminaire de théorie spectrale et géométrie (1997-1998)

  • Volume: 16, page 211-216
  • ISSN: 1624-5458

How to cite

top

Ge, Yuxin. "Inégalité de Wente et ses applications aux $H$-surfaces." Séminaire de théorie spectrale et géométrie 16 (1997-1998): 211-216. <http://eudml.org/doc/114421>.

@article{Ge1997-1998,
author = {Ge, Yuxin},
journal = {Séminaire de théorie spectrale et géométrie},
keywords = {topological method; critical points; symmetric functions},
language = {fre},
pages = {211-216},
publisher = {Institut Fourier},
title = {Inégalité de Wente et ses applications aux $H$-surfaces},
url = {http://eudml.org/doc/114421},
volume = {16},
year = {1997-1998},
}

TY - JOUR
AU - Ge, Yuxin
TI - Inégalité de Wente et ses applications aux $H$-surfaces
JO - Séminaire de théorie spectrale et géométrie
PY - 1997-1998
PB - Institut Fourier
VL - 16
SP - 211
EP - 216
LA - fre
KW - topological method; critical points; symmetric functions
UR - http://eudml.org/doc/114421
ER -

References

top
  1. [1] S. BARAKET, Estimations of the best constant involving the L∞ norm in Wente's inequality, à paraître dans Annales de l'Université Paul Satatier. Zbl0869.35032
  2. [2] H. BREZIS et J.M. CORON, Multiple solutions of H-systemes and Rellichs conjecture, Comm. Pure. Appl. Math, 37 ( 1984), 149-187. Zbl0537.49022MR733715
  3. [3] F. BETHUEL et J.M. GHIDAGLIA, Improved regularity of elliptic equations involving jacobians and applications, J. Math. Pure. Appl 72 ( 1993), 441-475. Zbl0831.35025MR1239099
  4. [4] J.M. CORON, Topologie et cas limite des injections de Sobolev, C.R. Acad. Sc. Paris, 299, Ser. I ( 1984), 209-212. Zbl0569.35032MR762722
  5. [5] Y. GE, Estimations of the best constant involving the L2 norm in Wente's inequality and compact H- surfaces into Euclidean space, COCV, Vol. 3 ( 1998), 263-300. Zbl0903.53003MR1634837
  6. [6] Y. GE et F. HÉLEIN, A remark on compact H-surfaces into ℝ3, en préparation. Zbl1052.58020
  7. [7] F. HÉLEIN, Applications harmoniques, lois de conservation et repère mobile, Diderot éditeur, Paris-New York-Amsterdam, ( 1996), ou Harmonie maps, conservation laws and moving frames, Diderot éditeur, Paris-New York-Amsterdam, ( 1997). 
  8. [8] S. HILDEBRANDT, On the Plateau problem for the surfaces of constant mean curvature, Comm. Pure. Appl. Math, 23 ( 1970), 97-114. Zbl0181.38703MR256276
  9. [9] P.L. LIONS, The concentration-compactness principle in the calculus of variations: The limit case. Part I and Part II, Rev. Mat. Ibero. 1(1) ( 1985), 145-201 and 1(2) ( 1985), 45-121. Zbl0704.49005MR850686
  10. [10] P. TOPPING, The Optimal Constant in Wente's L∞ Estimate, Comment. Math. Helv., 72 ( 1997), 316-328. Zbl0892.35030MR1470094
  11. [11] H. WENTE, An existence theorem for surfaces of constant mean curvature, J. Math. Anal. Appl, 26 ( 1969), 318-344; Large solutions to the volume constraint Plateau problem, Arch. rat. Mech. Anal, 75 ( 1980), 59-77. Zbl0181.11501MR243467
  12. [12] H. WENTE, Counter-example to a conjecture of H. Hopf, Pacific. J. Math, 121 ( 1986), 193-243. Zbl0586.53003

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.