Prescribed mean curvature hypersurfaces in H n + 1 with convex planar boundary, II

João Lucas Marques Barbosa; Ricardo Sa Earp

Séminaire de théorie spectrale et géométrie (1997-1998)

  • Volume: 16, page 43-79
  • ISSN: 1624-5458

How to cite

top

Barbosa, João Lucas Marques, and Sa Earp, Ricardo. "Prescribed mean curvature hypersurfaces in $H^{n+1}$ with convex planar boundary, II." Séminaire de théorie spectrale et géométrie 16 (1997-1998): 43-79. <http://eudml.org/doc/114424>.

@article{Barbosa1997-1998,
author = {Barbosa, João Lucas Marques, Sa Earp, Ricardo},
journal = {Séminaire de théorie spectrale et géométrie},
keywords = {mean curvature equation; hypersurface; hyperbolic space; Hopf maximum principle; flux formula},
language = {eng},
pages = {43-79},
publisher = {Institut Fourier},
title = {Prescribed mean curvature hypersurfaces in $H^\{n+1\}$ with convex planar boundary, II},
url = {http://eudml.org/doc/114424},
volume = {16},
year = {1997-1998},
}

TY - JOUR
AU - Barbosa, João Lucas Marques
AU - Sa Earp, Ricardo
TI - Prescribed mean curvature hypersurfaces in $H^{n+1}$ with convex planar boundary, II
JO - Séminaire de théorie spectrale et géométrie
PY - 1997-1998
PB - Institut Fourier
VL - 16
SP - 43
EP - 79
LA - eng
KW - mean curvature equation; hypersurface; hyperbolic space; Hopf maximum principle; flux formula
UR - http://eudml.org/doc/114424
ER -

References

top
  1. [1] BAKELMAN, I.YA., Hypersurfaces with Given Mean Curvature and Quasilinear Elliptic Equations with Strong Nonlinearities, Mat. Sbornik 75, 604-638 ( 1968). Zbl0176.18801MR225004
  2. [2] BAKELMAN, I.YA., Geometric Problems in Quasilinear Elliptic Equations, Russian Math. Surveys 25,45-109 ( 1970). Zbl0217.41401MR340814
  3. [3] BARBOSA, J.L.M., Geometria Hiperbólica. 20° Colóquio Brasileiro de Matematica, ( 1995). 
  4. [4] BARBOSA, J.L.M. and COLARES, A.G., Stability of Hypersurfaces with Constant r-Mean Curvature, Annals of Global Analysis and Geometry, 15, 277-297, ( 1997). Zbl0891.53044MR1456513
  5. [5] BARBOSA, J.L.M. and SA EARP, R., New Results on Prescribed Mean Curvature Hypersurfaces in Space Forms, Anais da Acad. Bras. de Ciências 67,1-5 ( 1995). Zbl0828.53053MR1752613
  6. [6] BARBOSA, J.L.M. and SA EARP, R., Prescribed Mean Curvature Hypersurfaces in Hn+1 ( - l ) with Convex Planar Boundary, I. To appear in Geometriae Dedicata 71, 61-74 ( 1998). Zbl0922.53023MR1624726
  7. [7] BRAGA BRITO, F. and SA EARP, R., Geometric Configurationsof Constant Mean Curvature Surfaces with Planar Boundary, Anais da Acad. Bras. de Ciências 63, 5-19 ( 1991). Zbl0803.53011MR1115489
  8. [8] BRAGA BRITO, F. and SA EARP, R., Special Weingarten Surfaces with Boundary a Round Circle, Annales de la Faculté de Sciences de Toulouse 2 VI, 243-255 ( 1997). Zbl0901.53003
  9. [9] BRAGA BRITO F., MEEKS W.H., ROSENBERG H. and SA EARP R., Structure Theorems for Constant Mean Curvarure Surfaces Bounded by a Planar Curve, Indiana Univ. Math. J. 40,333-343 ( 1991). Zbl0759.53003MR1101235
  10. [10] CAFFARELLI L., NIRENBERG L. and SPRUCK J., Nonlinear Second-order Eiliptic Equations V.The Dirichlet Problem for Weingarten Hypersurfaces, Comm. on Pure and Applied Math 61,47-70 ( 1988). Zbl0672.35028MR917124
  11. [11] GOMES, J. DE M., Sobre Hipersuperflcies com Curvatura Média Constante no Espaço Hiperbólico, Doctoral thesis, IMPA, 1985. 
  12. [12] GILBARG D. and TRUDINGER N.S., Elliptic Partial Differential Equations of Second Order, Springer-Verlag ( 1983). Zbl0562.35001MR737190
  13. [13] GUIO M.E., Uma Equação do Tipo Monge-Ampère, Dissertação de Mestrado, PUC-Rio ( 1995). 
  14. [14] KAPOULEAS N., Compact Constant Mean Curvature Surfaces in Euclidean Three-Space, J.Diff. Geometry 33.683-715( 1991). Zbl0727.53063MR1100207
  15. [15] KOREVAAR N., KUSNER R., MEEKS W.H. and SOLOMON B., Constant Mean Curvature Surfaces in Hyperbolic Space, American J. of Math. 114, 1-143 ( 1992). Zbl0757.53032MR1147718
  16. [16] KUSNER R.B., Global Geometry of Extremal Surfaces in Three-Space, Doctoral thesis, University of California, Berkeley ( 1985). 
  17. [17] LÓPEZ, R., Constant Mean Curvature Surfaces with boundary in the hyperbolic space, preprint 1996. MR1669875
  18. [18] LÓPEZ, R., and MONTIEL, S., Existence of Constant Mean Curvature Graphs in Hyperbolic Space, submitted to Calculus of Variations and Partial Differential Equations. Zbl0945.53008
  19. [19] LÓPEZ, R. and MONTIEL, S., Constant Mean Curvature Discs with Bounded Area, Proceedings of A.M.S. 123, 1555-1558 ( 1995). Zbl0840.53006MR1286001
  20. [20] NELLI, B., Hypersurfaces de Courbure Constante dans l'Espace Hyperbolique, Thèse de Doctorat, Université de Paris VII, Paris ( 1995). 
  21. [21] NELLI, B. and ROSENBERG, H., Some Remarks on Embedded Hypersurfaces in Hyperbolic Space of Constant Mean Curvature and Spherical boundary, Ann. Glob. An. and Geom. 13, 23-30 ( 1995). Zbl0831.53039MR1327108
  22. [22] NELLI, B. and ROSENBERG, H., Some remarks on Positive Scalar and Gauss-Kronecker Curvature Hypersurfaces of Rn+1 and Hn+l, Annales de l'Institut Fourier, 47, (4), 1209-1218 ( 1997). Zbl0878.53007MR1488250
  23. [23] NELLI , B. and SA EARP, R., Some Properties of Hypersurfaces of Prescribed Mean Curvature in Hn+1, Bull. Sc. Math. (6) 120, 537-553 ( 1996). Zbl0872.53008MR1420970
  24. [24] NELLI, B. and SEMMLER, B., Some Remarks on Compact Constant Mean Curvature Hypersurfaces in a Halfspace on Hn+1, to appear in the J. of Geometry. Zbl0981.53049
  25. [25] NELLI, B. and SPRUCK, J., On the Existence and Uniqueness of Constant Mean Curvature Hypersurfaces in Hyperbolic Space, Geometric Analysis and the Calculus of Variation, ed. J. Jost, International Press, Cambridge, 253-266 ( 1996). Zbl0936.35069MR1449411
  26. [26] OLIKER, V., The Gauss Curvature and Minkowski Problems in Space Forms, Contemporary Mathematics 101, 107-123 ( 1989). Zbl0689.53035MR1034975
  27. [27] PROTTER, M.H. and WEINBERGER, H.F., Maximum Principles in Differential Equations, Elglewood Cliffs, New Jersey Prentice-Hall, ( 1967). Zbl0153.13602MR219861
  28. [28] RASSIAS, T.M. and SA EARP, R., Some Problems in Analysis and Geometry, to appear in the volume Complex Analysis in Several Variables, Hadronic Press Inc., Florida, USA, ( 1998), ed. Th. Rassias. Zbl0949.53003
  29. [29] ROSENBERG, H., Hypersurfaces of Constant Curvature in Space Forms, Bulletin des Sciences Mathématiques, 2° série, 117,211-239 ( 1993). Zbl0787.53046MR1216008
  30. [30] ROS, A. and ROSENBERG, H., Constant Mean Curvature Surfaces in a Half-Space of R3 with Boundary in the Boundary of a Half-Space, J. Diff. Geometry 44, 807-817 ( 1996). Zbl0883.53009MR1438193
  31. [31] ROSENBERG, H. and SA EARP, R., The Geometry of ProperlyEmbedded Special Surfaces in R3; e.g., Surfaces Satisfying aH + bK = 1, where a and b are Positive, Duke Mathematical Journal, 73, (2), 291-306 ( 1994). Zbl0802.53002MR1262209
  32. [32] SA EARP, R., Recent Developments on the Structure of Compact Surfaces with Planar Boundary, The Problem of Plateau (edited by Th. M. Rassias), World Scientific, 245-257 ( 1992). Zbl0790.53008MR1209221
  33. [33] SA EARP, R., On two Mean Curvature Equations in Hyperbolic Space, to appear in the volume New Approches in Nonlinear Analysis, Hadronic Press Inc., Florida, USA, ( 1998), ed. Th. Rassias. Zbl0960.53034
  34. [34] SA EARP, R. and TOUBIANA, E., Introduction à la Géométrie Hyperbolique et aux Surfaces de Riemann, Ed. Diderot Multimedia, Paris, 1997. Zbl0944.30001
  35. [35] SA EARP, R. and TOUBIANA, E., Some Applications of Maximum Principle to Hypersurfaces Theory in Euclidean and Hyperbolic Space. To appear in the volume New Approches in Nonlinear Analysis, Hadronic Press Inc., Florida, USA, ( 1998), ed. Th. Rassias. Zbl0959.53038
  36. [36] SA EARP, R. and TOUBIANA, E., Existence and uniqueness of minimal graphs in hyperbolic space, preprint. Zbl0984.53005
  37. [37] SA EARP, R. and TOUBIANA, E., Symmetry of Properly Embedded Special Weingarten Surfaces in H3, to appear. Zbl0989.53003
  38. [38] SCHOEN, R., Uniqueness, Symmetry, and Embeddedness of Minimal Surfaces, J.Diff. Geometry, 18, 791-809 ( 1983). Zbl0575.53037MR730928
  39. [39] SEMMLER, B., Surfaces de Courbure Moyenne Constante dans les Espaces Euclidien et Hyperbolic, doctorat theses, Paris VII, ( 1997). 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.