On the structure of certain Weingarten surfaces with boundary a circle

Fabiano Gustavo Braga Brito; Ricardo Sa Earp

Annales de la Faculté des sciences de Toulouse : Mathématiques (1997)

  • Volume: 6, Issue: 2, page 243-255
  • ISSN: 0240-2963

How to cite

top

Braga Brito, Fabiano Gustavo, and Earp, Ricardo Sa. "On the structure of certain Weingarten surfaces with boundary a circle." Annales de la Faculté des sciences de Toulouse : Mathématiques 6.2 (1997): 243-255. <http://eudml.org/doc/73418>.

@article{BragaBrito1997,
author = {Braga Brito, Fabiano Gustavo, Earp, Ricardo Sa},
journal = {Annales de la Faculté des sciences de Toulouse : Mathématiques},
keywords = {disk-type Weingarten surfaces; maximum principle; Alexandrov reflection principle; umbilicial points},
language = {eng},
number = {2},
pages = {243-255},
publisher = {UNIVERSITE PAUL SABATIER},
title = {On the structure of certain Weingarten surfaces with boundary a circle},
url = {http://eudml.org/doc/73418},
volume = {6},
year = {1997},
}

TY - JOUR
AU - Braga Brito, Fabiano Gustavo
AU - Earp, Ricardo Sa
TI - On the structure of certain Weingarten surfaces with boundary a circle
JO - Annales de la Faculté des sciences de Toulouse : Mathématiques
PY - 1997
PB - UNIVERSITE PAUL SABATIER
VL - 6
IS - 2
SP - 243
EP - 255
LA - eng
KW - disk-type Weingarten surfaces; maximum principle; Alexandrov reflection principle; umbilicial points
UR - http://eudml.org/doc/73418
ER -

References

top
  1. [1] Barbosa ( J.L.).— Constant Mean Curvature Surfaces with Planar Boundary, Matemática Comtemporânea, 1 (1991), pp. 3-15. Zbl0854.53010MR1304297
  2. [2] Brito ( F.) and Earp ( R. Sa).— Geometric Configurations of Constant Mean Curvature Surfaces with Planar Boundary, An. Acad. Bras. Ci, 63, n° 1 (1991). Zbl0803.53011MR1115489
  3. [3] Bryant ( R.) . — Complex Analysis and a Class of Weingarten Surfaces, Preprint 
  4. [4] Caffarelli ( L.), Nirenberg ( L.) and Spruck ( J.).— The Dirichlet Problem for Non-linear Second Order Elliptic Equations II. Complex Monge-Ampère and Uniformly Elliptic Equations, Comm. Pure Appl. Math.38 (1985), pp. 209-252. Zbl0598.35048MR780073
  5. [5] Chern ( S.-S.).— On Special W-surfaces, Trans. A.M.S. (1955), pp. 783-786. Zbl0067.13801MR74857
  6. [6] Earp ( R. Sa), Brito ( F.), Meeks ( W.) and Rosenberg ( H.).— Structure Theorems for Constant Mean Curvature Surfaces Bounded by a Planar Curve, Indiana Univ. Math. J.40, n° 1 (1991), pp. 333-343. Zbl0759.53003MR1101235
  7. [7] Hartman ( P.) and Wintner ( W.).— Umbilical Points and W-surfaces, Amer. J. Math.76 (1954), pp. 502-508. Zbl0055.39601MR63082
  8. [8] Hopf ( H.) . — Differential Geometry in the Large, Lect. Notes in Math., Springer-Verlag, 1000 (1983). Zbl0526.53002MR707850
  9. [9] Kapouleas ( N.).— Compact Constant Mean Curvature Surfaces in Euclidean Three-Space, J. Diff. Geom.33 (1991), pp. 683-715. Zbl0727.53063MR1100207
  10. [10] Meeks ( W.H.). — The Topology and Geometry of Embedded Surfaces of Constant Mean Curvature, III, J. Diff. Geom.27 (1988), pp. 539-552. Zbl0617.53007MR940118
  11. [11] Morrey ( C.B.). — On the Analyticity of the Solutions of Analytic Non-linear Elliptic Systems of Partial Differential Equations I, II, Amer. J. of Math.80 (1958), pp. 198-218, 219-234. Zbl0081.09402MR106336

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.