Construction de surfaces à courbure moyenne constante

Frank Pacard

Séminaire de théorie spectrale et géométrie (1998-1999)

  • Volume: 17, page 139-157
  • ISSN: 1624-5458

How to cite


Pacard, Frank. "Construction de surfaces à courbure moyenne constante." Séminaire de théorie spectrale et géométrie 17 (1998-1999): 139-157. <>.

author = {Pacard, Frank},
journal = {Séminaire de théorie spectrale et géométrie},
language = {fre},
pages = {139-157},
publisher = {Institut Fourier},
title = {Construction de surfaces à courbure moyenne constante},
url = {},
volume = {17},
year = {1998-1999},

AU - Pacard, Frank
TI - Construction de surfaces à courbure moyenne constante
JO - Séminaire de théorie spectrale et géométrie
PY - 1998-1999
PB - Institut Fourier
VL - 17
SP - 139
EP - 157
LA - fre
UR -
ER -


  1. [1] C. DELAUNAY, Sur la surface de révolution dont la courbure moyenne est constante, J. de Mathématiques, 6(1841) 309-320. 
  2. [2] J. EELLS, On the surfaces of Delaunay and their Gauss maps. Proc. IV int. Colloq. Differential geometry, Santiago de Compostela 1978, 97-116 ( 1979). Zbl0433.53004MR569313
  3. [3] K. GROSSE-BRAUCKMANN, New surfaces of constant mean curvature, Math. Z. 214 ( 1993) 527-565. Zbl0806.53005MR1248112
  4. [4] K. GROSSE-BRAUCKMANN, R. Kusner et J. Sullivan, Constant mean curvature surfaces with three ends. To appear. Zbl0980.53011MR1806797
  5. [5] N. KAPOULEAS, Complete constant mean cuvature surfacesin Euclidean three space, Ann. of Math. (2) 131 ( 1990), 239-330. Zbl0699.53007MR1043269
  6. [6] N. KOREVAAR, R. KUSNER et B. SOLOMON, The structure of complete embedded surfaces with constant mean curvature, J. of Diff. Geometry, 30 ( 1989) 465-503. Zbl0726.53007MR1010168
  7. [7] R. KUSNER, R. MAZZEO et D. POLLACK, The moduli space of complete embedded constant mean curvature surfaces, Geom. Funct. Anal. 6 ( 1996) 120-137. Zbl0966.58005MR1371233
  8. [8] R. MAZZEO et F. PACARD, Constant mean curvature surfaces with Delaunay ends. On peut trouver le fichier ps à l'adresse suivante Zbl1005.53006
  9. [9] R. MAZZEO, F. PACARD et D. POLLACK, Connected sums of constant mean curvature surfaces in Euclidean 3 space. On peut trouver le fichier ps à l'adresse suivante Zbl0972.53010
  10. [10] R. MAZZEO, D. POLLACK et K. UHLENBECK, Connected sum constructions for constant scalar curvature metries, Top. Methods Nonlin. Anal. 6 No. 2, ( 1995), 207-233. Zbl0866.58069MR1399537
  11. [11] J. PEREZ et A. Ros, The space of properly embedded minimal surfaces with finite total curvature, Indiana Uni. Math. J. 45 ( 1996) 177-204. Zbl0864.53008MR1406689
  12. [12] R. SCHOEN , The existence of weak solutions with prescribed singular behavior for a conformally invariant scalar equation. Comm. Pure and Appl. Math. XLI ( 1988), 317-392. Zbl0674.35027MR929283
  13. [13] H. WENTE, Complete immersions of constant mean curvature, Proc. Sympos. Pure Math. 54 Amer. Math. Soc. ( 1993). Zbl0967.53506MR1216602

NotesEmbed ?


You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.


Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.