Einstein manifolds, volume rigidity and Seiberg-Witten theory
Séminaire de théorie spectrale et géométrie (1998-1999)
- Volume: 17, page 163-184
- ISSN: 1624-5458
Access Full Article
topHow to cite
topSambusetti, Andrea. "Einstein manifolds, volume rigidity and Seiberg-Witten theory." Séminaire de théorie spectrale et géométrie 17 (1998-1999): 163-184. <http://eudml.org/doc/114432>.
@article{Sambusetti1998-1999,
author = {Sambusetti, Andrea},
journal = {Séminaire de théorie spectrale et géométrie},
keywords = {rigidity result; Riemannian Einstein metric; Ricci curvature bounded below; volume estimate; negative sectional curvture; Seiberg-Witten equation},
language = {eng},
pages = {163-184},
publisher = {Institut Fourier},
title = {Einstein manifolds, volume rigidity and Seiberg-Witten theory},
url = {http://eudml.org/doc/114432},
volume = {17},
year = {1998-1999},
}
TY - JOUR
AU - Sambusetti, Andrea
TI - Einstein manifolds, volume rigidity and Seiberg-Witten theory
JO - Séminaire de théorie spectrale et géométrie
PY - 1998-1999
PB - Institut Fourier
VL - 17
SP - 163
EP - 184
LA - eng
KW - rigidity result; Riemannian Einstein metric; Ricci curvature bounded below; volume estimate; negative sectional curvture; Seiberg-Witten equation
UR - http://eudml.org/doc/114432
ER -
References
top- [1] M. ANDERSON - Einstein metrics and metrics with bounds on Ricci curvature, in International Congress of Mathematicians 1, Birkhäuser, Zurich ( 1994), 443-452. Zbl0840.53036MR1403944
- [2] T. AUBIN - Équations du type Monge-Ampère sur les variétés kahleriennes compactes, C. R. Acad. Sci. Paris, 283 ( 1976), 119-121. Zbl0333.53040MR433520
- [3] M. BERGER - Rapport sur les variétés d'Einstein, in "Analyse surles variétés", Metz, 1979, Astérisque 80 ( 1980), 5-19. Zbl0473.53039MR620166
- [4] A.L. BESSE- Einstein manifolds, Ergebnisse der Math. Springer-Verlag, Berlin-New York ( 1987). Zbl0613.53001MR867684
- [5] A.L. BESSE - Géométrie riemannienne en dimension 4, Séminaire Arthur Besse, Textes Mathématiques, Cedic/Nathan.
- [6] G. BESSON, G. COURTOIS, S. GAULOT - Entropie et rigidité des espaces localement symétriques de courbure strictement négative, GAFA. 5 (1995), 731-799. Zbl0851.53032MR1354289
- [7] G. BESSON, G. COURTOIS, S. GALLOT - Lemme de Schwarz réel et applications géométriques, Prépublication N.98-7 de l'École Polytechnique (Palaiseau, juin 1998). MR1738042
- [8] G. BESSON, G. COURTOIS, S. GALLOT- A real Schwarz lemma and some applications, Rend. Mat., Serie VII, Vol 18, Roma ( 1998), 381-410. Zbl0909.53001MR1659814
- [9] E. CALABI- The space of Kahler metrics, Proc. Congress Math. Amsterdam, Vol. 2 ( 1954), 206-207.
- [10] Première classe de Chern et courbure de Ricci: preuve de la conjecture de Calabi. Séminaire Palaiseau, Astérisque 58 ( 1978). Zbl0397.35028MR525893
- [11] A. DERDZINSKI - Einstein metrics indimension 4, to appear.
- [12] K. FUKAYA - Hausdorff convergence of Riemannian manifolds and its applications, Recent topics in differential and analytic geometry, Adv. Stud. Pure Math. 18, Academic Press, Boston ( 1990), 143-238. Zbl0754.53004MR1145256
- [13] S. GALLOT - Volume, courbure de Ricci et convergence des variétés d'après T.H. Colding et Cheeger- Colding. Séminaire Bourbaki n.835 ( 1997-98). Zbl0976.53038
- [14] M. GROMOV - Structures métriques pour les variétés Riemanniennes, Cedic/Fernand Nathan, Paris ( 1981). Zbl0509.53034MR682063
- [15] M. GROMOV- Volume and bounded cohomology, Publ. Math.Inst. Hautes Étud. Sci. 56 ( 1981), 213-307. Zbl0516.53046MR686042
- [16] E. HEBEY, M. HERZLICH - Harmonie coordinates, harmonie radius and convergence of Riemannian manifolds, Rend. Mat. Serie VII, Vol.17, Roma ( 1997), 569-605. Zbl0912.53011MR1620864
- [17] S. HELGASON - Differential geometry. Lie groups and symmetrie spaces, Pure and Appl. Mathematics, Academie Press, New York-London ( 1978). Zbl0451.53038MR514561
- [18] S. KOBAYASHI, K. NOMIZU - Foundations of differential geometry Vol l/2, Interscience tracts in Pure and Appl. Math. 15, Interscience Publishers, NewYork-London ( 1963). Zbl0119.37502MR152974
- [19] C. LEBRUN - Einstein metrics and Mostow rigidity, Math. Res. Lett. 2 ( 1995), 1-8. Zbl0974.53035MR1312972
- [20] C. LEBRUN - Polarized 4-manifolds, extremal kàhler metrics, and Seiberg-Witten theory, Math. Res. Lett. 2 ( 1995), 653-662. Zbl0874.53051MR1359969
- [21] C. LEBRUN - Four-manifolds without Einstein metrics, Math. Res. Lett. 2 ( 1996), 133-147. Zbl0856.53035MR1386835
- [22] T. MABUCHI - Einstein metrics in complex geometry: an introduction, Kähler metrics and moduli spaces, Adv.Stud.Pure Main. 18-11, Academie Press, Boston ( 1990), 1-10. Zbl0754.53052MR1145245
- [23] N. MOK - Metric rigid ity tkeorems on hermitian locally symmetrie manifolds, Series in Pure Math. 6, World Scientific. Zbl0912.32026
- [24] J.D. MOORE- Lectures Notes on Seiberg-Witten invariants, 241 ( 1995).
- [25] J.W. MORGAN - The Seiberg-Witten equations and applications to the topology of smooth 4-manifolds, Mathematical Notes 44, Princeton University Press ( 1996). Zbl0846.57001MR1367507
- [26] D. MUMFORD - An algebraic surface with K ample, (K2 ) = 9, pg = q « 0, Amer. J. Math. 101 ( 1979), 233-244. Zbl0433.14021MR527834
- [27] W. BARTH, C. PETERS, A. VAN DE VEN - Compact complex surfaces, Ergebnisse der Math. Springer-Verlag, Berlin-New York ( 1984). Zbl0718.14023MR749574
- [28] A.Z. PETROV- Einstein spaces, english translation of Prostranstva Eynshteyna (Fizmatlit, Moscow, 1961 ), Pergamon Press, Oxford-New York ( 1969). Zbl0174.28305MR244912
- [29] A. SAMBUSETTI - An obstruction to the existence of Einstein metrics on 4-manifolds, Math. Ann. 311 ( 1998), 533-548. Zbl0920.53026MR1637923
- [30] A. SAMBUSETTI - On minimal entropy and stability, to appear in Geometriae Dedicata. Zbl1010.53033MR1772208
- [31] A. SAMBUSETTI - Minimal entropy and simplicial volume, manuscripta math. 99 ( 1999), 541-560. Zbl0982.53033MR1713806
- [32] C. TAUBES- The Seiberg-Witten and Gromov invariants, Math. Res. Lett. 2 ( 1995), 221-238. Zbl0854.57020MR1324704
- [33] E. WITTEN- Monopoles and 4-manifolds, Math. Res. Lett. 1 ( 1994), 764-796. Zbl0867.57029MR1306021
- [34] S.T. YAU - On the Ricci curva ture of a compact Kähler manifold and the complex Monge-Ampere equation J, Comm. Pure and Appl. Math. XXXI ( 1978), 339-411. Zbl0369.53059MR480350
- [35] S.T. YAU - A general Schwarz lemma for kähler manifolds, Amer. J. Math. 100 ( 1978), 197-203. Zbl0424.53040MR486659
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.