Einstein manifolds, volume rigidity and Seiberg-Witten theory

Andrea Sambusetti

Séminaire de théorie spectrale et géométrie (1998-1999)

  • Volume: 17, page 163-184
  • ISSN: 1624-5458

How to cite

top

Sambusetti, Andrea. "Einstein manifolds, volume rigidity and Seiberg-Witten theory." Séminaire de théorie spectrale et géométrie 17 (1998-1999): 163-184. <http://eudml.org/doc/114432>.

@article{Sambusetti1998-1999,
author = {Sambusetti, Andrea},
journal = {Séminaire de théorie spectrale et géométrie},
keywords = {rigidity result; Riemannian Einstein metric; Ricci curvature bounded below; volume estimate; negative sectional curvture; Seiberg-Witten equation},
language = {eng},
pages = {163-184},
publisher = {Institut Fourier},
title = {Einstein manifolds, volume rigidity and Seiberg-Witten theory},
url = {http://eudml.org/doc/114432},
volume = {17},
year = {1998-1999},
}

TY - JOUR
AU - Sambusetti, Andrea
TI - Einstein manifolds, volume rigidity and Seiberg-Witten theory
JO - Séminaire de théorie spectrale et géométrie
PY - 1998-1999
PB - Institut Fourier
VL - 17
SP - 163
EP - 184
LA - eng
KW - rigidity result; Riemannian Einstein metric; Ricci curvature bounded below; volume estimate; negative sectional curvture; Seiberg-Witten equation
UR - http://eudml.org/doc/114432
ER -

References

top
  1. [1] M. ANDERSON - Einstein metrics and metrics with bounds on Ricci curvature, in International Congress of Mathematicians 1, Birkhäuser, Zurich ( 1994), 443-452. Zbl0840.53036MR1403944
  2. [2] T. AUBIN - Équations du type Monge-Ampère sur les variétés kahleriennes compactes, C. R. Acad. Sci. Paris, 283 ( 1976), 119-121. Zbl0333.53040MR433520
  3. [3] M. BERGER - Rapport sur les variétés d'Einstein, in "Analyse surles variétés", Metz, 1979, Astérisque 80 ( 1980), 5-19. Zbl0473.53039MR620166
  4. [4] A.L. BESSE- Einstein manifolds, Ergebnisse der Math. Springer-Verlag, Berlin-New York ( 1987). Zbl0613.53001MR867684
  5. [5] A.L. BESSE - Géométrie riemannienne en dimension 4, Séminaire Arthur Besse, Textes Mathématiques, Cedic/Nathan. 
  6. [6] G. BESSON, G. COURTOIS, S. GAULOT - Entropie et rigidité des espaces localement symétriques de courbure strictement négative, GAFA. 5 (1995), 731-799. Zbl0851.53032MR1354289
  7. [7] G. BESSON, G. COURTOIS, S. GALLOT - Lemme de Schwarz réel et applications géométriques, Prépublication N.98-7 de l'École Polytechnique (Palaiseau, juin 1998). MR1738042
  8. [8] G. BESSON, G. COURTOIS, S. GALLOT- A real Schwarz lemma and some applications, Rend. Mat., Serie VII, Vol 18, Roma ( 1998), 381-410. Zbl0909.53001MR1659814
  9. [9] E. CALABI- The space of Kahler metrics, Proc. Congress Math. Amsterdam, Vol. 2 ( 1954), 206-207. 
  10. [10] Première classe de Chern et courbure de Ricci: preuve de la conjecture de Calabi. Séminaire Palaiseau, Astérisque 58 ( 1978). Zbl0397.35028MR525893
  11. [11] A. DERDZINSKI - Einstein metrics indimension 4, to appear. 
  12. [12] K. FUKAYA - Hausdorff convergence of Riemannian manifolds and its applications, Recent topics in differential and analytic geometry, Adv. Stud. Pure Math. 18, Academic Press, Boston ( 1990), 143-238. Zbl0754.53004MR1145256
  13. [13] S. GALLOT - Volume, courbure de Ricci et convergence des variétés d'après T.H. Colding et Cheeger- Colding. Séminaire Bourbaki n.835 ( 1997-98). Zbl0976.53038
  14. [14] M. GROMOV - Structures métriques pour les variétés Riemanniennes, Cedic/Fernand Nathan, Paris ( 1981). Zbl0509.53034MR682063
  15. [15] M. GROMOV- Volume and bounded cohomology, Publ. Math.Inst. Hautes Étud. Sci. 56 ( 1981), 213-307. Zbl0516.53046MR686042
  16. [16] E. HEBEY, M. HERZLICH - Harmonie coordinates, harmonie radius and convergence of Riemannian manifolds, Rend. Mat. Serie VII, Vol.17, Roma ( 1997), 569-605. Zbl0912.53011MR1620864
  17. [17] S. HELGASON - Differential geometry. Lie groups and symmetrie spaces, Pure and Appl. Mathematics, Academie Press, New York-London ( 1978). Zbl0451.53038MR514561
  18. [18] S. KOBAYASHI, K. NOMIZU - Foundations of differential geometry Vol l/2, Interscience tracts in Pure and Appl. Math. 15, Interscience Publishers, NewYork-London ( 1963). Zbl0119.37502MR152974
  19. [19] C. LEBRUN - Einstein metrics and Mostow rigidity, Math. Res. Lett. 2 ( 1995), 1-8. Zbl0974.53035MR1312972
  20. [20] C. LEBRUN - Polarized 4-manifolds, extremal kàhler metrics, and Seiberg-Witten theory, Math. Res. Lett. 2 ( 1995), 653-662. Zbl0874.53051MR1359969
  21. [21] C. LEBRUN - Four-manifolds without Einstein metrics, Math. Res. Lett. 2 ( 1996), 133-147. Zbl0856.53035MR1386835
  22. [22] T. MABUCHI - Einstein metrics in complex geometry: an introduction, Kähler metrics and moduli spaces, Adv.Stud.Pure Main. 18-11, Academie Press, Boston ( 1990), 1-10. Zbl0754.53052MR1145245
  23. [23] N. MOK - Metric rigid ity tkeorems on hermitian locally symmetrie manifolds, Series in Pure Math. 6, World Scientific. Zbl0912.32026
  24. [24] J.D. MOORE- Lectures Notes on Seiberg-Witten invariants, 241 ( 1995). 
  25. [25] J.W. MORGAN - The Seiberg-Witten equations and applications to the topology of smooth 4-manifolds, Mathematical Notes 44, Princeton University Press ( 1996). Zbl0846.57001MR1367507
  26. [26] D. MUMFORD - An algebraic surface with K ample, (K2 ) = 9, pg = q « 0, Amer. J. Math. 101 ( 1979), 233-244. Zbl0433.14021MR527834
  27. [27] W. BARTH, C. PETERS, A. VAN DE VEN - Compact complex surfaces, Ergebnisse der Math. Springer-Verlag, Berlin-New York ( 1984). Zbl0718.14023MR749574
  28. [28] A.Z. PETROV- Einstein spaces, english translation of Prostranstva Eynshteyna (Fizmatlit, Moscow, 1961 ), Pergamon Press, Oxford-New York ( 1969). Zbl0174.28305MR244912
  29. [29] A. SAMBUSETTI - An obstruction to the existence of Einstein metrics on 4-manifolds, Math. Ann. 311 ( 1998), 533-548. Zbl0920.53026MR1637923
  30. [30] A. SAMBUSETTI - On minimal entropy and stability, to appear in Geometriae Dedicata. Zbl1010.53033MR1772208
  31. [31] A. SAMBUSETTI - Minimal entropy and simplicial volume, manuscripta math. 99 ( 1999), 541-560. Zbl0982.53033MR1713806
  32. [32] C. TAUBES- The Seiberg-Witten and Gromov invariants, Math. Res. Lett. 2 ( 1995), 221-238. Zbl0854.57020MR1324704
  33. [33] E. WITTEN- Monopoles and 4-manifolds, Math. Res. Lett. 1 ( 1994), 764-796. Zbl0867.57029MR1306021
  34. [34] S.T. YAU - On the Ricci curva ture of a compact Kähler manifold and the complex Monge-Ampere equation J, Comm. Pure and Appl. Math. XXXI ( 1978), 339-411. Zbl0369.53059MR480350
  35. [35] S.T. YAU - A general Schwarz lemma for kähler manifolds, Amer. J. Math. 100 ( 1978), 197-203. Zbl0424.53040MR486659

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.