Page 1 Next

Displaying 1 – 20 of 55

Showing per page

𝒞 0 -rigidity of characteristics in symplectic geometry

Emmanuel Opshtein (2009)

Annales scientifiques de l'École Normale Supérieure

The paper concerns a 𝒞 0 -rigidity result for the characteristic foliations in symplectic geometry. A symplectic homeomorphism (in the sense of Eliashberg-Gromov) which preserves a smooth hypersurface also preserves its characteristic foliation.

A note on conformal vector fields on a Riemannian manifold

Sharief Deshmukh, Falleh Al-Solamy (2014)

Colloquium Mathematicae

We consider an n-dimensional compact Riemannian manifold (M,g) and show that the presence of a non-Killing conformal vector field ξ on M that is also an eigenvector of the Laplacian operator acting on smooth vector fields with eigenvalue λ > 0, together with an upper bound on the energy of the vector field ξ, implies that M is isometric to the n-sphere Sⁿ(λ). We also introduce the notion of φ-analytic conformal vector fields, study their properties, and obtain a characterization of n-spheres...

A remark on almost umbilical hypersurfaces

Julien Roth (2013)

Archivum Mathematicum

In this article, we prove new stability results for almost-Einstein hypersurfaces of the Euclidean space, based on previous eigenvalue pinching results. Then, we deduce some comparable results for almost umbilical hypersurfaces.

De Lellis-Topping type inequalities for f-Laplacians

Guangyue Huang, Fanqi Zeng (2016)

Studia Mathematica

We establish an integral geometric inequality on a closed Riemannian manifold with ∞-Bakry-Émery Ricci curvature bounded from below. We also obtain similar inequalities for Riemannian manifolds with totally geodesic boundary. In particular, our results generalize those of Wu (2014) for the ∞-Bakry-Émery Ricci curvature.

Discrétisation de zeta-déterminants d’opérateurs de Schrödinger sur le tore

Laurent Chaumard (2006)

Bulletin de la Société Mathématique de France

Nous donnons ici deux résultats sur le déterminant ζ -régularisé det ζ A d’un opérateur de Schrödinger A = Δ g + V sur une variété compacte . Nous construisons, pour = S 1 × S 1 , une suite ( G n , ρ n , Δ n ) G n est un graphe fini qui se plonge dans via ρ n de telle manière que ρ n ( G n ) soit une triangulation de et où  Δ n est un laplacien discret sur G n tel que pour tout potentiel V sur , la suite de réels det ( Δ n + V ) converge après renormalisation vers det ζ ( Δ g + V ) . Enfin, nous donnons sur toute variété riemannienne compacte ( , g ) de dimension inférieure ou égale à 3 ...

Harmonic maps and representations of non-uniform lattices of PU ( m , 1 )

Vincent Koziarz, Julien Maubon (2008)

Annales de l’institut Fourier

We study representations of lattices of PU ( m , 1 ) into PU ( n , 1 ) . We show that if a representation is reductive and if m is at least 2, then there exists a finite energy harmonic equivariant map from complex hyperbolic m -space to complex hyperbolic n -space. This allows us to give a differential geometric proof of rigidity results obtained by M. Burger and A. Iozzi. We also define a new invariant associated to representations into PU ( n , 1 ) of non-uniform lattices in PU ( 1 , 1 ) , and more generally of fundamental groups of orientable...

Hilbert volume in metric spaces. Part 1

Misha Gromov (2012)

Open Mathematics

We introduce a notion of Hilbertian n-volume in metric spaces with Besicovitch-type inequalities built-in into the definitions. The present Part 1 of the article is, for the most part, dedicated to the reformulation of known results in our terms with proofs being reduced to (almost) pure tautologies. If there is any novelty in the paper, this is in forging certain terminology which, ultimately, may turn useful in an Alexandrov kind of approach to singular spaces with positive scalar curvature [Gromov...

Immersions minimales et immersions pluriharmoniques entre variétés riemanniennes : résultats de non existence et de rigidité

Ahmad El Soufi, Robert Petit (2000)

Annales de l'institut Fourier

Dans cet article nous nous intéressons aux immersions isométriques minimales (resp. pluriharmoniques) définies sur une variété riemannienne munie d’une 2-forme parallèle non triviale à valeurs dans une variété riemannienne ou kählérienne de courbure isotrope négative (resp. positive). Les résultats que nous obtenons généralisent certains résultats bien connus de non existence et de rigidité concernant les immersions minimales et pluriharmoniques de variétés kählériennes dans les espaces formes réels...

La première valeur propre d’opérateurs de Dirac sur les variétés à bord et quelques applications

Simon Raulot (2007/2008)

Séminaire de théorie spectrale et géométrie

Dans cet article, on s’intéresse à l’aspect conforme du spectre d’opérateurs de Dirac dans le cadre des variétés à bord. Dans un premier temps, on étudie la première valeur propre de l’opérateur de Dirac sous la condition associée à un opérateur de chiralité conduisant à la définition d’un nouvel invariant spinoriel conforme. Dans la dernière partie, on s’intéresse à l’opérateur de Dirac du bord en reliant sa première valeur propre à des invariants reflétant la géométrie extrinsèque du bord. Dans...

Les géométries de Hilbert sont à géométrie locale bornée

Bruno Colbois, Constantin Vernicos (2007)

Annales de l’institut Fourier

On montre que la géométrie de Hilbert d’un domaine convexe de n est à géométrie locale bornée c-à-d que pour un rayon fixé, toutes les boules sont bilipschitz à un domaine de n euclidien. On en déduit que si la géométrie de Hilbert est hyperbolique au sens de Gromov, alors le bas de son spectre est strictement positif. On donne un contre-exemple en dimension trois qui montre que la réciproque n’est pas vraie pour les géométries de Hilbert non planes.

Currently displaying 1 – 20 of 55

Page 1 Next