Problèmes de valeurs propres et application à l'indice des surfaces de courbure moyenne constante

Pierre Bérard

Séminaire de théorie spectrale et géométrie (1999-2000)

  • Volume: 18, page 109-118
  • ISSN: 1624-5458

How to cite

top

Bérard, Pierre. "Problèmes de valeurs propres et application à l'indice des surfaces de courbure moyenne constante." Séminaire de théorie spectrale et géométrie 18 (1999-2000): 109-118. <http://eudml.org/doc/114440>.

@article{Bérard1999-2000,
author = {Bérard, Pierre},
journal = {Séminaire de théorie spectrale et géométrie},
keywords = {constant mean curvature; strong and weak stability; strong and weak index; Dirichlet problem; twisted Dirichlet problem},
language = {fre},
pages = {109-118},
publisher = {Institut Fourier},
title = {Problèmes de valeurs propres et application à l'indice des surfaces de courbure moyenne constante},
url = {http://eudml.org/doc/114440},
volume = {18},
year = {1999-2000},
}

TY - JOUR
AU - Bérard, Pierre
TI - Problèmes de valeurs propres et application à l'indice des surfaces de courbure moyenne constante
JO - Séminaire de théorie spectrale et géométrie
PY - 1999-2000
PB - Institut Fourier
VL - 18
SP - 109
EP - 118
LA - fre
KW - constant mean curvature; strong and weak stability; strong and weak index; Dirichlet problem; twisted Dirichlet problem
UR - http://eudml.org/doc/114440
ER -

References

top
  1. [1] D'ARCY-THOMPSON, W. - On growth and form, Cambridge University Press, 1942. Zbl0063.07372MR6348
  2. [2] BARBOSA, L., DO CARMO, M., ESCHENBURG, J. - Stability of hypersurfaces of constant mean curvature in Riemannian manifolds, Math. Z. 197 ( 1988), 123-138. Zbl0653.53045MR917854
  3. [3] BÉRARD, P., BARBOSA, L. - Eigenvalue and "twisted" eigenvalue problems, Applications to cmc surfaces, J. Math. Pures Appl. 79 ( 2000), 427-450 Zbl0958.58006MR1759435
  4. [4] BÉRARD, P., HAUSWIRTH, L. - General curvature estimates for stable H-surfaces immersed into a space form, J. Math. Pures Appl. 78 ( 1999), 667-700 Zbl0960.53033MR1711051
  5. [5] BÉRARD, P., LIMA, L., ROSSMAN, W. - Index growth of hypersurfaces with constant mean curvature, à paraître dans Math. Zeitschrift Zbl0998.53005
  6. [6] CASTILLON, P. - Spectral properties of constant mean curvature submanifolds in hyperbolic space, Ann. Global Anal. Geom. 17 ( 1999), 563-580 Zbl0948.58004MR1728088
  7. [7] FISCHER-COLBRIE, D. - On complete minimal surfaces with finite Morse index in three manifolds, Inventiones Math. 82 ( 1987), 121-132 Zbl0573.53038MR808112
  8. [8] FISCHER-COLBRIE, D., SCHOEN, R. - The structure of complete minimal surfaces in 3-manifolds of non-negative scalar curvature, Comm. Pure Appl. Math., 33 ( 1980), 199-211 Zbl0439.53060MR562550
  9. [9] LIMA, L., ROSSMAN, W. - Index of constant mean curvature 1 -surfaces in H3, Indiana Univ. Math. J. 47 ( 1998) 685-723. Zbl0924.53040MR1647877
  10. [10] SCHOEN, R. - Estimates for stable minimal surfaces in three manifolds, in : E. Bombieri (Ed.), Seminar on Minimal Submanifolds, Annals of Math. Studies, Princeton University Press, 1983 Zbl0532.53042MR795231
  11. [11] DA SIEVEIRA, A. - Stability of complete noncompact surfaces with constant mean curvature, Math. Ann. 277 ( 1987), 629-638. Zbl0627.53045MR901709
  12. [12] UHLENBECK, K. - Generic properties of eigenfunctions, Amer. J. Math. 98 ( 1976), 1059-1078 Zbl0355.58017MR464332

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.