Théorème de la sphère

Erwann Aubry

Séminaire de théorie spectrale et géométrie (1999-2000)

  • Volume: 18, page 125-155
  • ISSN: 1624-5458

How to cite

top

Aubry, Erwann. "Théorème de la sphère." Séminaire de théorie spectrale et géométrie 18 (1999-2000): 125-155. <http://eudml.org/doc/114442>.

@article{Aubry1999-2000,
author = {Aubry, Erwann},
journal = {Séminaire de théorie spectrale et géométrie},
keywords = {sphere theorem; compact Riemannian manifold},
language = {fre},
pages = {125-155},
publisher = {Institut Fourier},
title = {Théorème de la sphère},
url = {http://eudml.org/doc/114442},
volume = {18},
year = {1999-2000},
}

TY - JOUR
AU - Aubry, Erwann
TI - Théorème de la sphère
JO - Séminaire de théorie spectrale et géométrie
PY - 1999-2000
PB - Institut Fourier
VL - 18
SP - 125
EP - 155
LA - fre
KW - sphere theorem; compact Riemannian manifold
UR - http://eudml.org/doc/114442
ER -

References

top
  1. [1] U. ABRESCH, D. GROMOLL, On complete manifolds with nonnegative Ricci curvature, Journ. A.M.S., 3 ( 1990), 355-374. Zbl0704.53032MR1030656
  2. [2] M. ANDERSON, Metrics of positive Ricci curvature with large diameter, Manuscripta Math., 68 ( 1990) 405-415. Zbl0711.53036MR1068264
  3. [3] I. CHAVEL, Riemannian geometry : a modern introduction, Cambridge Tracts in Mathematics, Cambridge university press, 1993. Zbl0810.53001MR1271141
  4. [4] J. CHEEGER, T. COLDING, On the structure of space with Ricci curvature bounded below, J. Diff. Geom., 46 ( 1997), 404. Zbl0902.53034MR1484888
  5. [5] J. CHEEGER, T. COLDING, Lower bounds on Ricci curvature and the almost rigidity of werped products, Ann. of Math., 144 ( 1996), 189-237. Zbl0865.53037MR1405949
  6. [6] S. Y. CHENG, Eigenvalue comparison theorems and its geometric application, Math. Z., 143 ( 1975), 289-297. Zbl0329.53035MR378001
  7. [7] S. CHENG, S. YAU, Differential equations on Riemannian manifolds and their geometric applications, Comm. Pure Appl. Math 28 ( 1975), 333-354. Zbl0312.53031MR385749
  8. [8] T. COLDING, Shape of manifolds with positive Ricci curvature, Invent. Math., 124 ( 1996), 175. Zbl0871.53027MR1369414
  9. [9] T. COLDING, Large manifolds with positive Ricci curvature, Invent. Math., 124 ( 1996), 193. Zbl0871.53028MR1369415
  10. [10] T. COLDING, Ricci curvature and volume convergence, Annals of Maths, 145 ( 1997), 477. Zbl0879.53030MR1454700
  11. [11] S. GALLOT, Volumes, courbure de Ricci et convergence des variétés, Sém. Bourbaki, 835 ( 1997-1998) 
  12. [12] S. GALLOT, Variété dont le spectre ressemble à celui de la sphère, Astérisque, 80 ( 1980), 33. Zbl0471.53027MR620168
  13. [13] M. GROMOV, (rédigé par J. Lafontaine et P. Pansu); Structures métriques sur les variétés riemanniennes, Textes Math., n° 1, 1981. Zbl0509.53034MR682063
  14. [14] S. ILIAS, Un nouveau résultat de pincement de la première valeur propre du Laplacien et preuve de la conjecture du diamètre pincé, Annales Institut Fourier, 43 ( 1993), 843. Zbl0783.53024MR1242618
  15. [15] OBATA, Certain condition for a riemannian manifold to be isometric to a sphere, J. Math. Soc. Japan, 14 ( 1962), 333-340. Zbl0115.39302MR142086
  16. [16] P. PETERSEN, On eigenvalue pinching in positive Ricci curvature, Preprint. Zbl0988.53011
  17. [17] K. SHIOHAMA, Recent developments in sphere theorems, Proc. of Symp. in Pure Math., 54 ( 1993), Part 3. Zbl0844.53035MR1216646

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.