Théorème de la sphère
Séminaire de théorie spectrale et géométrie (1999-2000)
- Volume: 18, page 125-155
- ISSN: 1624-5458
Access Full Article
topHow to cite
topAubry, Erwann. "Théorème de la sphère." Séminaire de théorie spectrale et géométrie 18 (1999-2000): 125-155. <http://eudml.org/doc/114442>.
@article{Aubry1999-2000,
author = {Aubry, Erwann},
journal = {Séminaire de théorie spectrale et géométrie},
keywords = {sphere theorem; compact Riemannian manifold},
language = {fre},
pages = {125-155},
publisher = {Institut Fourier},
title = {Théorème de la sphère},
url = {http://eudml.org/doc/114442},
volume = {18},
year = {1999-2000},
}
TY - JOUR
AU - Aubry, Erwann
TI - Théorème de la sphère
JO - Séminaire de théorie spectrale et géométrie
PY - 1999-2000
PB - Institut Fourier
VL - 18
SP - 125
EP - 155
LA - fre
KW - sphere theorem; compact Riemannian manifold
UR - http://eudml.org/doc/114442
ER -
References
top- [1] U. ABRESCH, D. GROMOLL, On complete manifolds with nonnegative Ricci curvature, Journ. A.M.S., 3 ( 1990), 355-374. Zbl0704.53032MR1030656
- [2] M. ANDERSON, Metrics of positive Ricci curvature with large diameter, Manuscripta Math., 68 ( 1990) 405-415. Zbl0711.53036MR1068264
- [3] I. CHAVEL, Riemannian geometry : a modern introduction, Cambridge Tracts in Mathematics, Cambridge university press, 1993. Zbl0810.53001MR1271141
- [4] J. CHEEGER, T. COLDING, On the structure of space with Ricci curvature bounded below, J. Diff. Geom., 46 ( 1997), 404. Zbl0902.53034MR1484888
- [5] J. CHEEGER, T. COLDING, Lower bounds on Ricci curvature and the almost rigidity of werped products, Ann. of Math., 144 ( 1996), 189-237. Zbl0865.53037MR1405949
- [6] S. Y. CHENG, Eigenvalue comparison theorems and its geometric application, Math. Z., 143 ( 1975), 289-297. Zbl0329.53035MR378001
- [7] S. CHENG, S. YAU, Differential equations on Riemannian manifolds and their geometric applications, Comm. Pure Appl. Math 28 ( 1975), 333-354. Zbl0312.53031MR385749
- [8] T. COLDING, Shape of manifolds with positive Ricci curvature, Invent. Math., 124 ( 1996), 175. Zbl0871.53027MR1369414
- [9] T. COLDING, Large manifolds with positive Ricci curvature, Invent. Math., 124 ( 1996), 193. Zbl0871.53028MR1369415
- [10] T. COLDING, Ricci curvature and volume convergence, Annals of Maths, 145 ( 1997), 477. Zbl0879.53030MR1454700
- [11] S. GALLOT, Volumes, courbure de Ricci et convergence des variétés, Sém. Bourbaki, 835 ( 1997-1998)
- [12] S. GALLOT, Variété dont le spectre ressemble à celui de la sphère, Astérisque, 80 ( 1980), 33. Zbl0471.53027MR620168
- [13] M. GROMOV, (rédigé par J. Lafontaine et P. Pansu); Structures métriques sur les variétés riemanniennes, Textes Math., n° 1, 1981. Zbl0509.53034MR682063
- [14] S. ILIAS, Un nouveau résultat de pincement de la première valeur propre du Laplacien et preuve de la conjecture du diamètre pincé, Annales Institut Fourier, 43 ( 1993), 843. Zbl0783.53024MR1242618
- [15] OBATA, Certain condition for a riemannian manifold to be isometric to a sphere, J. Math. Soc. Japan, 14 ( 1962), 333-340. Zbl0115.39302MR142086
- [16] P. PETERSEN, On eigenvalue pinching in positive Ricci curvature, Preprint. Zbl0988.53011
- [17] K. SHIOHAMA, Recent developments in sphere theorems, Proc. of Symp. in Pure Math., 54 ( 1993), Part 3. Zbl0844.53035MR1216646
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.