Sur l'homologie et le spectre des variétés hyperboliques

Nicolas Bergeron

Séminaire de théorie spectrale et géométrie (1999-2000)

  • Volume: 18, page 17-26
  • ISSN: 1624-5458

How to cite

top

Bergeron, Nicolas. "Sur l'homologie et le spectre des variétés hyperboliques." Séminaire de théorie spectrale et géométrie 18 (1999-2000): 17-26. <http://eudml.org/doc/114445>.

@article{Bergeron1999-2000,
author = {Bergeron, Nicolas},
journal = {Séminaire de théorie spectrale et géométrie},
keywords = {hyperbolic manifold; isospectral; virtual Betti number; geodesic cycle; honeycomb},
language = {fre},
pages = {17-26},
publisher = {Institut Fourier},
title = {Sur l'homologie et le spectre des variétés hyperboliques},
url = {http://eudml.org/doc/114445},
volume = {18},
year = {1999-2000},
}

TY - JOUR
AU - Bergeron, Nicolas
TI - Sur l'homologie et le spectre des variétés hyperboliques
JO - Séminaire de théorie spectrale et géométrie
PY - 1999-2000
PB - Institut Fourier
VL - 18
SP - 17
EP - 26
LA - fre
KW - hyperbolic manifold; isospectral; virtual Betti number; geodesic cycle; honeycomb
UR - http://eudml.org/doc/114445
ER -

References

top
  1. [1] I. R. AITCHISON and J. H. RUBINSTEIN, Combinatorial cubings, cusps, and the dodecahedral knots, Topology '90 (Columbus, OH, 1990), 17-26, Ohio State Univ. Math. Res. Inst. Publ., 1, de Gruyter, Berlin, 1992. Zbl0773.57010MR1184399
  2. [2] I. R. AITCHISON and J. H. RUBINSTEIN, Geodesic surfaces in knot complements, Experiment Math. 6 ( 1997), n° 2,137-150. Zbl0891.57017MR1474574
  3. [3] M. D. BAKER, The virtual ℤ-representability of certain 3-manifold groups, Proc. Amer. Math. Soc. 103 ( 1988), n° 3, 996-998. Zbl0657.57006MR947696
  4. [4] N. BERGERON, Premier nombre de Betti et spectre du laplacien de certaines variétés hyperboliques, à paraître dans L'Enseignement Mathématique. Zbl0969.58009
  5. [5] P. BUSER, Geometry and spectra of compact Riemann surfaces, Birkhäuser ( 1992). Zbl0770.53001MR1183224
  6. [6] A. BOREI, Compact Clifford-Klein forms of symmetric spaces, Topology 2 ( 1963), 111-122. Zbl0116.38603MR146301
  7. [7] H. S. M. COXETER, Regular honeycombs in hyperbolic space, Proceedings of the International Congress of Mathematicians, 1954, Amsterdam, vol. III, pp. 155-169. Erven P. Noordhoff N.V., Groningen; North-Holland Publishing Co., Amsterdam, 1956. Zbl0073.36603MR87114
  8. [8] M. GROMOV and I. PIATESKI-SHAPIRO, Non-arithmetic groups in Lobachevsky spaces, Publ. Math. I. H. E. S., pp. 93-103 ( 1988). Zbl0649.22007
  9. [9] A. HATCHER, Hyperbolic structures of arithmetic type on some link complements, J. London Math. Soc. (2), 27 ( 1983), 345-355. Zbl0516.57001MR692540
  10. [10] H. HILDEN, M. LOZANO and J. MONTESINOS, On knots that are universal, Topology 24 ( 1985), 499-504. Zbl0582.57002MR816529
  11. [11] S. KOJIMA and D. D. LONG, Virtual Betti numbers of some hyperbolic 3-manifolds, A fête of topology, 417-437, Academic Press, Boston, MA, ( 1988). Zbl0652.57007MR928410
  12. [12] D. D. LONG, Immersions and embeddings of totally geodesic surfaces, Buil. London Math. Soc. 19, pp. 481-484( 1987). Zbl0596.57011MR898729
  13. [13] A. LUBOTZKY, Free quotients and the first Betti number of some hyperbolic manifolds, Transform. Groups 1, pp. 71-82 ( 1996). Zbl0876.22015MR1390750
  14. [14] J. G. RATCLIFFE, Fondations of hyperbolic manifolds, Graduate Texts in Mathematics 149, Springer-Verlag ( 1994). Zbl0809.51001MR1299730
  15. [15] A. W. REID, Totally geodesic surfaces in hyperbolic 3-manifotds, Proc. Edimburgh Math. Soc. ( 1991) 34, 77-88. Zbl0714.57010MR1093177
  16. [16] A. W. REID, Isospectrality and commensurability of arithmetic hyperbolic 2- and 3-manifolds, Duke Math. J. ( 1992) 65, 215-228. Zbl0776.58040MR1150584
  17. [17] P. SCOTT, Subgroups of surface groups are aimost geometric, J. London Math. Soc. 17 (2) ( 1978) 555-565. Zbl0412.57006MR494062
  18. [18] A. SELBERG, On discontinuous groups in higher-dimensional symmetric spaces, in: Contributions to Function Theory, edited by K. Chandrasekharan, Tata Inst. of Fund. Research, Bombay ( 1960), 147-164. Zbl0201.36603MR130324
  19. [19] R. J. SPATZIER, On isospectral locally symmetric spaces and a theorem of von Neumann, Duke Math. J. ( 1989) 59, 289-294; Correction, Duke Math. J. ( 1990) 60, 561. Zbl0709.22006MR1016888
  20. [20] M.-F. Vignéras, Variétés Riemanniennes isospectrales et non isométriques, Ann. of Math. ( 1980) 112, 21-32. Zbl0445.53026MR584073
  21. [21] E. B. Vinberg, Geometry II, Encyclopedia of Mathematical Sciences, 29, Springer-Verlag ( 1993). Zbl0786.00008MR1254931

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.