Sur l'homologie et le spectre des variétés hyperboliques
Séminaire de théorie spectrale et géométrie (1999-2000)
- Volume: 18, page 17-26
- ISSN: 1624-5458
Access Full Article
topHow to cite
topBergeron, Nicolas. "Sur l'homologie et le spectre des variétés hyperboliques." Séminaire de théorie spectrale et géométrie 18 (1999-2000): 17-26. <http://eudml.org/doc/114445>.
@article{Bergeron1999-2000,
author = {Bergeron, Nicolas},
journal = {Séminaire de théorie spectrale et géométrie},
keywords = {hyperbolic manifold; isospectral; virtual Betti number; geodesic cycle; honeycomb},
language = {fre},
pages = {17-26},
publisher = {Institut Fourier},
title = {Sur l'homologie et le spectre des variétés hyperboliques},
url = {http://eudml.org/doc/114445},
volume = {18},
year = {1999-2000},
}
TY - JOUR
AU - Bergeron, Nicolas
TI - Sur l'homologie et le spectre des variétés hyperboliques
JO - Séminaire de théorie spectrale et géométrie
PY - 1999-2000
PB - Institut Fourier
VL - 18
SP - 17
EP - 26
LA - fre
KW - hyperbolic manifold; isospectral; virtual Betti number; geodesic cycle; honeycomb
UR - http://eudml.org/doc/114445
ER -
References
top- [1] I. R. AITCHISON and J. H. RUBINSTEIN, Combinatorial cubings, cusps, and the dodecahedral knots, Topology '90 (Columbus, OH, 1990), 17-26, Ohio State Univ. Math. Res. Inst. Publ., 1, de Gruyter, Berlin, 1992. Zbl0773.57010MR1184399
- [2] I. R. AITCHISON and J. H. RUBINSTEIN, Geodesic surfaces in knot complements, Experiment Math. 6 ( 1997), n° 2,137-150. Zbl0891.57017MR1474574
- [3] M. D. BAKER, The virtual ℤ-representability of certain 3-manifold groups, Proc. Amer. Math. Soc. 103 ( 1988), n° 3, 996-998. Zbl0657.57006MR947696
- [4] N. BERGERON, Premier nombre de Betti et spectre du laplacien de certaines variétés hyperboliques, à paraître dans L'Enseignement Mathématique. Zbl0969.58009
- [5] P. BUSER, Geometry and spectra of compact Riemann surfaces, Birkhäuser ( 1992). Zbl0770.53001MR1183224
- [6] A. BOREI, Compact Clifford-Klein forms of symmetric spaces, Topology 2 ( 1963), 111-122. Zbl0116.38603MR146301
- [7] H. S. M. COXETER, Regular honeycombs in hyperbolic space, Proceedings of the International Congress of Mathematicians, 1954, Amsterdam, vol. III, pp. 155-169. Erven P. Noordhoff N.V., Groningen; North-Holland Publishing Co., Amsterdam, 1956. Zbl0073.36603MR87114
- [8] M. GROMOV and I. PIATESKI-SHAPIRO, Non-arithmetic groups in Lobachevsky spaces, Publ. Math. I. H. E. S., pp. 93-103 ( 1988). Zbl0649.22007
- [9] A. HATCHER, Hyperbolic structures of arithmetic type on some link complements, J. London Math. Soc. (2), 27 ( 1983), 345-355. Zbl0516.57001MR692540
- [10] H. HILDEN, M. LOZANO and J. MONTESINOS, On knots that are universal, Topology 24 ( 1985), 499-504. Zbl0582.57002MR816529
- [11] S. KOJIMA and D. D. LONG, Virtual Betti numbers of some hyperbolic 3-manifolds, A fête of topology, 417-437, Academic Press, Boston, MA, ( 1988). Zbl0652.57007MR928410
- [12] D. D. LONG, Immersions and embeddings of totally geodesic surfaces, Buil. London Math. Soc. 19, pp. 481-484( 1987). Zbl0596.57011MR898729
- [13] A. LUBOTZKY, Free quotients and the first Betti number of some hyperbolic manifolds, Transform. Groups 1, pp. 71-82 ( 1996). Zbl0876.22015MR1390750
- [14] J. G. RATCLIFFE, Fondations of hyperbolic manifolds, Graduate Texts in Mathematics 149, Springer-Verlag ( 1994). Zbl0809.51001MR1299730
- [15] A. W. REID, Totally geodesic surfaces in hyperbolic 3-manifotds, Proc. Edimburgh Math. Soc. ( 1991) 34, 77-88. Zbl0714.57010MR1093177
- [16] A. W. REID, Isospectrality and commensurability of arithmetic hyperbolic 2- and 3-manifolds, Duke Math. J. ( 1992) 65, 215-228. Zbl0776.58040MR1150584
- [17] P. SCOTT, Subgroups of surface groups are aimost geometric, J. London Math. Soc. 17 (2) ( 1978) 555-565. Zbl0412.57006MR494062
- [18] A. SELBERG, On discontinuous groups in higher-dimensional symmetric spaces, in: Contributions to Function Theory, edited by K. Chandrasekharan, Tata Inst. of Fund. Research, Bombay ( 1960), 147-164. Zbl0201.36603MR130324
- [19] R. J. SPATZIER, On isospectral locally symmetric spaces and a theorem of von Neumann, Duke Math. J. ( 1989) 59, 289-294; Correction, Duke Math. J. ( 1990) 60, 561. Zbl0709.22006MR1016888
- [20] M.-F. Vignéras, Variétés Riemanniennes isospectrales et non isométriques, Ann. of Math. ( 1980) 112, 21-32. Zbl0445.53026MR584073
- [21] E. B. Vinberg, Geometry II, Encyclopedia of Mathematical Sciences, 29, Springer-Verlag ( 1993). Zbl0786.00008MR1254931
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.