Displaying similar documents to “Sur l'homologie et le spectre des variétés hyperboliques”

Quelques exemples de variétés riemanniennes où toutes les géodésiques issues d'un point sont fermées et de même longueur suivis de quelques résultats sur leur topologie

Lionel Bérard-Bergery (1977)

Annales de l'institut Fourier

Similarity:

On donne une construction de métriques riemanniennes où toutes les géodésiques issues d’un point sont fermées et de même longueur sur certaines variétés non difféomorphes aux sphères et projectifs usuels, et en particulier sur certaines sphères exotiques On étudie ensuite la topologie de ces variétés ; on précise le classique théorème de Bott dans le cas non simplement connexe ; on étend ses conclusions (affaiblies) sous une hypothèse plus faible sur les géodésiques. ...

Groupes fondamentaux des variétés de dimension 3 et algèbres d’opérateurs

Pierre de la Harpe, Jean-Philippe Préaux (2007)

Annales de la faculté des sciences de Toulouse Mathématiques

Similarity:

Nous proposons une caractérisation géométrique des variétés de dimension  3 ayant des groupes fondamentaux dont toutes les classes de conjugaison autres que  { 1 } sont infinies, c’est-à-dire dont les algèbres de von Neumann sont des facteurs de type  I I 1   : ce sont essentiellement les 3 -variétés à groupes fondamentaux infinis qui n’admettent pas de fibration de Seifert. Autrement dit et plus précisément, soient  M une 3 -variété connexe compacte et Γ son groupe fondamental, qu’on suppose être...