Two lectures on spectral invariants for the Schrödinger operator

Mikhail V. Novitskii

Séminaire de théorie spectrale et géométrie (1999-2000)

  • Volume: 18, page 77-107
  • ISSN: 1624-5458

How to cite

top

Novitskii, Mikhail V.. "Two lectures on spectral invariants for the Schrödinger operator." Séminaire de théorie spectrale et géométrie 18 (1999-2000): 77-107. <http://eudml.org/doc/114452>.

@article{Novitskii1999-2000,
author = {Novitskii, Mikhail V.},
journal = {Séminaire de théorie spectrale et géométrie},
keywords = {almost periodic potentials; completeness; Hill operator; averaging; inverse problems},
language = {eng},
pages = {77-107},
publisher = {Institut Fourier},
title = {Two lectures on spectral invariants for the Schrödinger operator},
url = {http://eudml.org/doc/114452},
volume = {18},
year = {1999-2000},
}

TY - JOUR
AU - Novitskii, Mikhail V.
TI - Two lectures on spectral invariants for the Schrödinger operator
JO - Séminaire de théorie spectrale et géométrie
PY - 1999-2000
PB - Institut Fourier
VL - 18
SP - 77
EP - 107
LA - eng
KW - almost periodic potentials; completeness; Hill operator; averaging; inverse problems
UR - http://eudml.org/doc/114452
ER -

References

top
  1. [1] AKHIEZER, N.I.: Classical moment problem and some related questions in analysis, Hafner Publishing Co., New York, 1965. Zbl0135.33803MR184042
  2. [2] CONWAY, J.H., SLOANE, N.J.A.: Four dimensional lattices with the same theta series, Intern. Math. Research Notes 4, 93-96 ( 1992). Zbl0770.11022MR1159450
  3. [3] CRAIG, W.: The trace formula for the Schrödinger operator, Comm. Math. Phys. 126, 379-407 ( 1988). Zbl0681.34026MR1027503
  4. [4] ESKIN, G., RALSTON, J. and TRUBOWITZ, E.: Isospectral periodic potentials on Rn. SIAM-AMS Proceedings, 14, 91-96 ( 1984). Zbl0558.34022MR773705
  5. [5] ESKIN, G., RALSTON, J. and TRUBOWITZ, E.: The multidimensional inverse spectral problem with periodic potential, Contemp. Math., 27, 45-56 ( 1984). Zbl0581.58034MR741038
  6. [6] ESKIN, G., RALSTON, J. and TRUBOWITZ, E.: On isospectral periodic potentials in Rn., Comm. on Pure and Appl. Math., 237, 647-676 ( 1984). Zbl0574.35021MR752594
  7. [7] ESKIN, G., RALSTON, J. and TRUBOWITZ, E.: On isospectral periodic potentials in Rn.II, Comm. on Pure and Appl. Math., 237, 715-753 ( 1984). Zbl0582.35031MR762871
  8. [8] ESKIN, G.: Inverse spectral problem for the Schrödinger operator with periodic magnetic and electric potentials, Séminaire sur les Équations aux Dérivées Partielles, 1988-1989, Exp. No. XIII, 6pp., École Polytech., Palaiseau, 1989. Zbl0702.35236MR1032289
  9. [9] ESKIN, G.: Inverse spectral problem for the Schrödinger operator with periodic vector potential, Comm. Math. Phys., 125, no.2, 263-300 ( 1989). Zbl0697.35168MR1016872
  10. [10] FIGOTIN, A. L., PASTUR, L. A.: Spectra of random and almost periodic operators, Grundlehrer der Mathematischen Wissenschaften 297, Springer-Verlag, Berlin, 1992. Zbl0752.47002MR1223779
  11. [11] GARDNER, C., GBEENE, J., KRUSKAL, R., MIURA, R.: Korteweg-de Vries equation and generalizations, VI, Methods for exact solution, Comm. Pure Appl. Math. 27,97-133 ( 1974). Zbl0291.35012MR336122
  12. [12] GESZTESY, F., HOLDEN, H., SIMON, B., ZHAO, Z.: Trace formulas for multidimensional Schrödinger operators, J. Funct Anal. 141, No. 2,449- 465( 1996). Zbl0864.35030MR1418515
  13. [13] GORDON, C.,S., KAPPELER, T.: On isospectral potentil on tori, Duke Math. J. 63, No. 1, 217-233 ( 1991). Zbl0732.35064MR1106944
  14. [14] GORDON, C.,S., KAPPELER, T.: On isospectral potentil on flat tori II, Commun, in partial diff. equations 20, No. 3-4, 709-728 ( 1995). Zbl0849.35085MR1318086
  15. [15] JOHNSON, R., MOSER, J.: The rotation number for almost periodic potentials, Comm. Math. Phys. 84, 403-438 ( 1982). Zbl0497.35026MR667409
  16. [16] KAC, M.: Can you hear the shape of a drum ? Am. Math. Mon. 73, 1-23 ( 1966). Zbl0139.05603MR201237
  17. [17] RAPPELER, T.: On isospectral potentil on a discrete lattice I, Duke Math. J. 57, No. 1, 135-150 ( 1988). Zbl0696.35140MR952228
  18. [18] KAPPELER, T.: On isospectral potentil on a discrete lattice II, Adv. in Appl. Math. 9, No. 4,428-438 ( 1988). Zbl0675.35023MR968676
  19. [19] KAPPELER, T.: Isospectral potentil on a discrete lattice III, Trans. Amer. Math. Soc. 314, No. 2, 815-824 ( 1989). Zbl0706.35112MR961624
  20. [20] KARPESHINA, Y.E.: Perturbation theory for the Schrödinger operator with a periodic potential, LNM 73, 1-23 ( 1966). Zbl0883.35002
  21. [21] KOTANY, S.: Ljaponov exponents and spectra for one-dimensional random Schrödinger operators, AMS Conference on Random Matrices and Their Applications, Stochastic Analysis( K. Ito, ed.), North Holland, Amsterdam, 1984, 225-248. Zbl0587.60054
  22. [22] LAX, P.: Integrals of nonlinear equations of evolution and solitary waves, Commun. Pure and Appl. Math., 21, 467-490 ( 1968). Zbl0162.41103MR235310
  23. [23] LAX, P.: Periodic solutions of the KdV equation, Commun. Pure and Appl. Math., 38, 141-188 ( 1975). Zbl0295.35004MR369963
  24. [24] LAX, P.: Trace formulas for the Schrödinger operator, Commun. Pure and Appl. Math. 47, no.4, 503-512 ( 1994). Zbl0802.34089MR1272386
  25. [25] LEVITAN, B.M.: Inverse Sturm-Liouville problem, VSP, Zeist, 1987. Zbl0749.34001MR933088
  26. [26] MARCHENKO, V.A.: Sturm- Liouville operators and applications, Operator theory: Advances and Applications 22, Birkhäuser Verlag, Basel-Boston, Mass., 1986. Zbl0592.34011MR897106
  27. [27] MARCHENKO, V.A, OSTROVSKII, I.V.: A characterization of the Hill's operator, Math. USSR Sbornik 26, 493-554 ( 1975). Zbl0343.34016
  28. [28] MCKEAN, H.P., VAN MOERBEKE, P.: Spectrum of Hill equation, Invent Math., 30, 217-274 ( 1975). Zbl0319.34024MR397076
  29. [29] MCKEAN, H.P., TRUBOWITZ E.: Hill's operators and hyperelliptic function theory in the presence of infinitely many branch points, Comm. on pure and appl.math, 29, 143-226 ( 1976). Zbl0339.34024MR427731
  30. [30] MINAKSHISUNDARAM, S., PLEIJEL, A.: Some properties of the eigenfunctions of the Laplace operator on Riemannian manifold, Can. J. Math., 1, 242-256 ( 1949). Zbl0041.42701MR31145
  31. [31] MOLCHANOV, S.A, NOVITSKII, M.V.: On spectral invariants of the Schrödinger operator on the torus, Uspekhi Math. Nauk, 38, no. 5 (233), 135-136 (Russian). 
  32. [32] MOLCHANOV, S.A, NOVITSKII, M.V.: On spectral invariants of the Schrödinger operator on the torus, Dokl. Acad. Nauk SSSR, 286, n. 2, 287-291 ( 1986) (Russian); English translation: Sov. Math. Doklady, 33, 82-85 ( 1986). Zbl0676.58049MR823385
  33. [33] MOLCHANOV, S.A, NOVITSKII, M.V.: Spectral invariants of the Schrödinger operator on the torus, Mathematical physics, functional analysis, Kiev, Naukova Dumka, 34-39 ( 1986) (Russian). Zbl0676.58049MR906076
  34. [34] NOVIKOV, S.P., MANAKOV, S.V., PITAEVSKII, L.P., ZAKHAROV, V.E.: Theory of solitons, Nauka, Moskow, 1980; English transl., Plenum Press, New York, 1984. Zbl0598.35002MR779467
  35. [35] NOVITSKII, M.V. : On the recovery from a collection of polynomial conservation laws, of action variables for KdV equation in the class of almost periodic function, Math. SSSR Sbornik, 56, n.2, 417-428 ( 1985) (Russian, English translation). Zbl0615.35074
  36. [36] NOVITSKII, M.V.: Equivalent system of spectral invariant of the Hill operator, Mathematical physics, functional analysis, Kiev, Naukova Dumka, 40-47 ( 1986) (Russian). Zbl0672.47033MR906077
  37. [37] NOVITSKII, M.V.: Spectral invariants of the Schrödinger operator on the torus with a coupling constant potential, Operators in Functional Spaces and Problems of Function Theory, Kiev, Naukova Dumka, 27-32 ( 1987) (Russian). Zbl0697.35169MR946495
  38. [38] NOVITSKII, M.V.: On complete description of the fundamental discrete series of the spectral invariants of the Hill operator, Theory of Functions, Functional Analysis and Applications, Kharkov, 56 ( 1991) 30-35 (Russian); English translation: Journal of Mathematical Sciences, 76, no.4, 2464-2468 ( 1995). Zbl0839.34032MR1220893
  39. [39] NOVITSKII, M.V.: On a complete description of the principal discrete series of spectral invariants of the Hills operator, Operator Theory: Advances and Applications, 46, Basel, Birkhauser Verlag, 115-117 ( 1990). Zbl0728.34090MR1124657
  40. [40] NOVITSKII, M.V.: Quasianalytic classes and isospectral Hill's operators, Advances in Soviet Mathematics, Spectral operator theory and related topics, 19, 27-39 ( 1994). Zbl0811.34072MR1298441
  41. [41] NOVITSKII, M.V.: Spectral invariants of the Schrödinger operator families, inverse problems and related functionals, Doctoral theses, Kharkov, 1997. (see Appendix on http::www-fourier.ujf-grenoble.fr/SEMINAIRES/STSG) 
  42. [42] REED, M., SIMON, B.: Methods of modern mathematical physics, IV Analysis of operators, New York-London, Academic Press, 1972. Zbl0242.46001MR493421
  43. [43] SKRIGANOV, M.M.: The spectrum band structure of the three-dimensional Schrödinger operator with periodic potential, Invent. Math., 80, no. l, 107-121 ( 1985). Zbl0578.47003MR784531
  44. [44] SUNADA, T.: Trace formula for Hill's operators, Duke Mathematical Journal, 47, no.3, 529-546 ( 1980). Zbl0522.34006MR587164
  45. [45] TITCHMARSH, E.C.: Eigenfunction expansions associated with second-order differential equation II, Clarendon Press, Oxford, 1958. Zbl0097.27601MR19765
  46. [46] TRUBOWITZ, E.: The inverse problem with periodic potential, Commun.on pure and appl. math., 30, 321-337 ( 1977). Zbl0403.34022MR430403
  47. [47] VELIEV, O.: Asymptotic formulas for the eigenvalues of the periodic Schrödinger operator, and the Bethe-Sommerfeld conjecture (Russian), Funktsional. Anal, i Pril., 21, no.2, 1-15 ( 1987). Zbl0638.47049MR902289

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.