Two lectures on spectral invariants for the Schrödinger operator
Séminaire de théorie spectrale et géométrie (1999-2000)
- Volume: 18, page 77-107
- ISSN: 1624-5458
Access Full Article
topHow to cite
topNovitskii, Mikhail V.. "Two lectures on spectral invariants for the Schrödinger operator." Séminaire de théorie spectrale et géométrie 18 (1999-2000): 77-107. <http://eudml.org/doc/114452>.
@article{Novitskii1999-2000,
author = {Novitskii, Mikhail V.},
journal = {Séminaire de théorie spectrale et géométrie},
keywords = {almost periodic potentials; completeness; Hill operator; averaging; inverse problems},
language = {eng},
pages = {77-107},
publisher = {Institut Fourier},
title = {Two lectures on spectral invariants for the Schrödinger operator},
url = {http://eudml.org/doc/114452},
volume = {18},
year = {1999-2000},
}
TY - JOUR
AU - Novitskii, Mikhail V.
TI - Two lectures on spectral invariants for the Schrödinger operator
JO - Séminaire de théorie spectrale et géométrie
PY - 1999-2000
PB - Institut Fourier
VL - 18
SP - 77
EP - 107
LA - eng
KW - almost periodic potentials; completeness; Hill operator; averaging; inverse problems
UR - http://eudml.org/doc/114452
ER -
References
top- [1] AKHIEZER, N.I.: Classical moment problem and some related questions in analysis, Hafner Publishing Co., New York, 1965. Zbl0135.33803MR184042
- [2] CONWAY, J.H., SLOANE, N.J.A.: Four dimensional lattices with the same theta series, Intern. Math. Research Notes 4, 93-96 ( 1992). Zbl0770.11022MR1159450
- [3] CRAIG, W.: The trace formula for the Schrödinger operator, Comm. Math. Phys. 126, 379-407 ( 1988). Zbl0681.34026MR1027503
- [4] ESKIN, G., RALSTON, J. and TRUBOWITZ, E.: Isospectral periodic potentials on Rn. SIAM-AMS Proceedings, 14, 91-96 ( 1984). Zbl0558.34022MR773705
- [5] ESKIN, G., RALSTON, J. and TRUBOWITZ, E.: The multidimensional inverse spectral problem with periodic potential, Contemp. Math., 27, 45-56 ( 1984). Zbl0581.58034MR741038
- [6] ESKIN, G., RALSTON, J. and TRUBOWITZ, E.: On isospectral periodic potentials in Rn., Comm. on Pure and Appl. Math., 237, 647-676 ( 1984). Zbl0574.35021MR752594
- [7] ESKIN, G., RALSTON, J. and TRUBOWITZ, E.: On isospectral periodic potentials in Rn.II, Comm. on Pure and Appl. Math., 237, 715-753 ( 1984). Zbl0582.35031MR762871
- [8] ESKIN, G.: Inverse spectral problem for the Schrödinger operator with periodic magnetic and electric potentials, Séminaire sur les Équations aux Dérivées Partielles, 1988-1989, Exp. No. XIII, 6pp., École Polytech., Palaiseau, 1989. Zbl0702.35236MR1032289
- [9] ESKIN, G.: Inverse spectral problem for the Schrödinger operator with periodic vector potential, Comm. Math. Phys., 125, no.2, 263-300 ( 1989). Zbl0697.35168MR1016872
- [10] FIGOTIN, A. L., PASTUR, L. A.: Spectra of random and almost periodic operators, Grundlehrer der Mathematischen Wissenschaften 297, Springer-Verlag, Berlin, 1992. Zbl0752.47002MR1223779
- [11] GARDNER, C., GBEENE, J., KRUSKAL, R., MIURA, R.: Korteweg-de Vries equation and generalizations, VI, Methods for exact solution, Comm. Pure Appl. Math. 27,97-133 ( 1974). Zbl0291.35012MR336122
- [12] GESZTESY, F., HOLDEN, H., SIMON, B., ZHAO, Z.: Trace formulas for multidimensional Schrödinger operators, J. Funct Anal. 141, No. 2,449- 465( 1996). Zbl0864.35030MR1418515
- [13] GORDON, C.,S., KAPPELER, T.: On isospectral potentil on tori, Duke Math. J. 63, No. 1, 217-233 ( 1991). Zbl0732.35064MR1106944
- [14] GORDON, C.,S., KAPPELER, T.: On isospectral potentil on flat tori II, Commun, in partial diff. equations 20, No. 3-4, 709-728 ( 1995). Zbl0849.35085MR1318086
- [15] JOHNSON, R., MOSER, J.: The rotation number for almost periodic potentials, Comm. Math. Phys. 84, 403-438 ( 1982). Zbl0497.35026MR667409
- [16] KAC, M.: Can you hear the shape of a drum ? Am. Math. Mon. 73, 1-23 ( 1966). Zbl0139.05603MR201237
- [17] RAPPELER, T.: On isospectral potentil on a discrete lattice I, Duke Math. J. 57, No. 1, 135-150 ( 1988). Zbl0696.35140MR952228
- [18] KAPPELER, T.: On isospectral potentil on a discrete lattice II, Adv. in Appl. Math. 9, No. 4,428-438 ( 1988). Zbl0675.35023MR968676
- [19] KAPPELER, T.: Isospectral potentil on a discrete lattice III, Trans. Amer. Math. Soc. 314, No. 2, 815-824 ( 1989). Zbl0706.35112MR961624
- [20] KARPESHINA, Y.E.: Perturbation theory for the Schrödinger operator with a periodic potential, LNM 73, 1-23 ( 1966). Zbl0883.35002
- [21] KOTANY, S.: Ljaponov exponents and spectra for one-dimensional random Schrödinger operators, AMS Conference on Random Matrices and Their Applications, Stochastic Analysis( K. Ito, ed.), North Holland, Amsterdam, 1984, 225-248. Zbl0587.60054
- [22] LAX, P.: Integrals of nonlinear equations of evolution and solitary waves, Commun. Pure and Appl. Math., 21, 467-490 ( 1968). Zbl0162.41103MR235310
- [23] LAX, P.: Periodic solutions of the KdV equation, Commun. Pure and Appl. Math., 38, 141-188 ( 1975). Zbl0295.35004MR369963
- [24] LAX, P.: Trace formulas for the Schrödinger operator, Commun. Pure and Appl. Math. 47, no.4, 503-512 ( 1994). Zbl0802.34089MR1272386
- [25] LEVITAN, B.M.: Inverse Sturm-Liouville problem, VSP, Zeist, 1987. Zbl0749.34001MR933088
- [26] MARCHENKO, V.A.: Sturm- Liouville operators and applications, Operator theory: Advances and Applications 22, Birkhäuser Verlag, Basel-Boston, Mass., 1986. Zbl0592.34011MR897106
- [27] MARCHENKO, V.A, OSTROVSKII, I.V.: A characterization of the Hill's operator, Math. USSR Sbornik 26, 493-554 ( 1975). Zbl0343.34016
- [28] MCKEAN, H.P., VAN MOERBEKE, P.: Spectrum of Hill equation, Invent Math., 30, 217-274 ( 1975). Zbl0319.34024MR397076
- [29] MCKEAN, H.P., TRUBOWITZ E.: Hill's operators and hyperelliptic function theory in the presence of infinitely many branch points, Comm. on pure and appl.math, 29, 143-226 ( 1976). Zbl0339.34024MR427731
- [30] MINAKSHISUNDARAM, S., PLEIJEL, A.: Some properties of the eigenfunctions of the Laplace operator on Riemannian manifold, Can. J. Math., 1, 242-256 ( 1949). Zbl0041.42701MR31145
- [31] MOLCHANOV, S.A, NOVITSKII, M.V.: On spectral invariants of the Schrödinger operator on the torus, Uspekhi Math. Nauk, 38, no. 5 (233), 135-136 (Russian).
- [32] MOLCHANOV, S.A, NOVITSKII, M.V.: On spectral invariants of the Schrödinger operator on the torus, Dokl. Acad. Nauk SSSR, 286, n. 2, 287-291 ( 1986) (Russian); English translation: Sov. Math. Doklady, 33, 82-85 ( 1986). Zbl0676.58049MR823385
- [33] MOLCHANOV, S.A, NOVITSKII, M.V.: Spectral invariants of the Schrödinger operator on the torus, Mathematical physics, functional analysis, Kiev, Naukova Dumka, 34-39 ( 1986) (Russian). Zbl0676.58049MR906076
- [34] NOVIKOV, S.P., MANAKOV, S.V., PITAEVSKII, L.P., ZAKHAROV, V.E.: Theory of solitons, Nauka, Moskow, 1980; English transl., Plenum Press, New York, 1984. Zbl0598.35002MR779467
- [35] NOVITSKII, M.V. : On the recovery from a collection of polynomial conservation laws, of action variables for KdV equation in the class of almost periodic function, Math. SSSR Sbornik, 56, n.2, 417-428 ( 1985) (Russian, English translation). Zbl0615.35074
- [36] NOVITSKII, M.V.: Equivalent system of spectral invariant of the Hill operator, Mathematical physics, functional analysis, Kiev, Naukova Dumka, 40-47 ( 1986) (Russian). Zbl0672.47033MR906077
- [37] NOVITSKII, M.V.: Spectral invariants of the Schrödinger operator on the torus with a coupling constant potential, Operators in Functional Spaces and Problems of Function Theory, Kiev, Naukova Dumka, 27-32 ( 1987) (Russian). Zbl0697.35169MR946495
- [38] NOVITSKII, M.V.: On complete description of the fundamental discrete series of the spectral invariants of the Hill operator, Theory of Functions, Functional Analysis and Applications, Kharkov, 56 ( 1991) 30-35 (Russian); English translation: Journal of Mathematical Sciences, 76, no.4, 2464-2468 ( 1995). Zbl0839.34032MR1220893
- [39] NOVITSKII, M.V.: On a complete description of the principal discrete series of spectral invariants of the Hills operator, Operator Theory: Advances and Applications, 46, Basel, Birkhauser Verlag, 115-117 ( 1990). Zbl0728.34090MR1124657
- [40] NOVITSKII, M.V.: Quasianalytic classes and isospectral Hill's operators, Advances in Soviet Mathematics, Spectral operator theory and related topics, 19, 27-39 ( 1994). Zbl0811.34072MR1298441
- [41] NOVITSKII, M.V.: Spectral invariants of the Schrödinger operator families, inverse problems and related functionals, Doctoral theses, Kharkov, 1997. (see Appendix on http::www-fourier.ujf-grenoble.fr/SEMINAIRES/STSG)
- [42] REED, M., SIMON, B.: Methods of modern mathematical physics, IV Analysis of operators, New York-London, Academic Press, 1972. Zbl0242.46001MR493421
- [43] SKRIGANOV, M.M.: The spectrum band structure of the three-dimensional Schrödinger operator with periodic potential, Invent. Math., 80, no. l, 107-121 ( 1985). Zbl0578.47003MR784531
- [44] SUNADA, T.: Trace formula for Hill's operators, Duke Mathematical Journal, 47, no.3, 529-546 ( 1980). Zbl0522.34006MR587164
- [45] TITCHMARSH, E.C.: Eigenfunction expansions associated with second-order differential equation II, Clarendon Press, Oxford, 1958. Zbl0097.27601MR19765
- [46] TRUBOWITZ, E.: The inverse problem with periodic potential, Commun.on pure and appl. math., 30, 321-337 ( 1977). Zbl0403.34022MR430403
- [47] VELIEV, O.: Asymptotic formulas for the eigenvalues of the periodic Schrödinger operator, and the Bethe-Sommerfeld conjecture (Russian), Funktsional. Anal, i Pril., 21, no.2, 1-15 ( 1987). Zbl0638.47049MR902289
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.