Spectral asymptotics for Schrödinger operators with a degenerate potential

Françoise Truc

Séminaire de théorie spectrale et géométrie (2001-2002)

  • Volume: 20, page 17-22
  • ISSN: 1624-5458

How to cite

top

Truc, Françoise. "Spectral asymptotics for Schrödinger operators with a degenerate potential." Séminaire de théorie spectrale et géométrie 20 (2001-2002): 17-22. <http://eudml.org/doc/114466>.

@article{Truc2001-2002,
author = {Truc, Françoise},
journal = {Séminaire de théorie spectrale et géométrie},
keywords = {asymptotic growth of the number of eigenvalues; energy; Schrödinger operator; potential; classical; semi-classical},
language = {eng},
pages = {17-22},
publisher = {Institut Fourier},
title = {Spectral asymptotics for Schrödinger operators with a degenerate potential},
url = {http://eudml.org/doc/114466},
volume = {20},
year = {2001-2002},
}

TY - JOUR
AU - Truc, Françoise
TI - Spectral asymptotics for Schrödinger operators with a degenerate potential
JO - Séminaire de théorie spectrale et géométrie
PY - 2001-2002
PB - Institut Fourier
VL - 20
SP - 17
EP - 22
LA - eng
KW - asymptotic growth of the number of eigenvalues; energy; Schrödinger operator; potential; classical; semi-classical
UR - http://eudml.org/doc/114466
ER -

References

top
  1. [1] J. AVRON, I. HERBST. B. SIMON, Duke. Math. J., 45 ( 1978), 847-883. Zbl0399.35029MR518109
  2. [2] Y. COLIN DE VERDIÈRE, L'asymptotique de Weyl pour les bouteilles magnétiques, Comm. Math. Phys., 105 (1986). 327-335. Zbl0612.35102MR849211
  3. [3] J.S. DE WET and MANDL, On the asymptotic distribution of eigenvalues, Proc. Roy. Soc. London Ser., 200 ( 1950), 572-580. Zbl0040.33702MR35369
  4. [4] B.M. LEVITAN, On the asymptotic behavior of Green's function and its expansion in eigenvalues of Schrödinger's equation, Math. USSR-Sb.41, 83 ( 1957), 439-458. Zbl0083.32602MR89353
  5. [5] A.G. KOSTJUCENKO, Asymptotic distribution of the eigenvalues of elliptic operators, Soviet Math. Dokl., 5 ( 1964), 1171-1175. Zbl0135.32007
  6. [6] A. MORAME and F. TRUC, Semi-classical eigenvalue asymptotics for a Schrödinger operator with a degenerate potential, Asympt. Anal., 22 ( 2000), 39-49. Zbl0947.35116MR1739517
  7. [7] M. REED and B. SIMON, Methods of Modern Mathematical Physics IV, Academic press, New York, 1978. Zbl0401.47001MR751959
  8. [8] D. ROBERT, Comportement asymptotique des valeurs propres d'opérateurs du type de Schrödinger à potentiel dégénéré, J. Math. Pures Appl., 61 ( 1982), 275-300. Zbl0511.35069MR690397
  9. [9] G.V. ROSENBLJUM, Asymptotics of the eigenvalues of the Schrödinger operator, Math. USSR- Sb., 22 (3 )( 1974), 349-371. Zbl0304.35070
  10. [10] B. SIMON, Non classical eigenvalue asymptotics, J. Funct. Anal., 53 ( 1983), 84-98. Zbl0529.35064
  11. [11] M.Z. SOLOMYAK, Asymptotics of the spectrum of the Schrödinger operator with non regular homogeneous potential, Math. USSR-Sb., 55(1) ( 1986), 19-37. Zbl0657.35099
  12. [12] E.C. TITCHMARSH, On the asymptotic distribution of eigenvalues, Quart J. Math. Oxford Ser. (2). 5 ( 1954), 228-240. Zbl0056.08305MR68078
  13. [13] F. TRUCSemi-classical asymptotics for magnetic bottles, Asympt. Anal., 15 ( 1997), 385-395. Zbl0902.35079MR1487718

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.