Formes harmoniques L 2 sur les variétés asymptotiquement hyperboliques complexes

Nader Yeganefar

Séminaire de théorie spectrale et géométrie (2002-2003)

  • Volume: 21, page 55-59
  • ISSN: 1624-5458

How to cite

top

Yeganefar, Nader. "Formes harmoniques $L^2$ sur les variétés asymptotiquement hyperboliques complexes." Séminaire de théorie spectrale et géométrie 21 (2002-2003): 55-59. <http://eudml.org/doc/114476>.

@article{Yeganefar2002-2003,
author = {Yeganefar, Nader},
journal = {Séminaire de théorie spectrale et géométrie},
keywords = {asymptotically complex hyperbolic; cohomology; harmonic form},
language = {fre},
pages = {55-59},
publisher = {Institut Fourier},
title = {Formes harmoniques $L^2$ sur les variétés asymptotiquement hyperboliques complexes},
url = {http://eudml.org/doc/114476},
volume = {21},
year = {2002-2003},
}

TY - JOUR
AU - Yeganefar, Nader
TI - Formes harmoniques $L^2$ sur les variétés asymptotiquement hyperboliques complexes
JO - Séminaire de théorie spectrale et géométrie
PY - 2002-2003
PB - Institut Fourier
VL - 21
SP - 55
EP - 59
LA - fre
KW - asymptotically complex hyperbolic; cohomology; harmonic form
UR - http://eudml.org/doc/114476
ER -

References

top
  1. [A] N. ANGHEL, An abstract index theorem on non-compact Riemannian manifolds, Houston J. Math., 19-2 ( 1993), 223-237. Zbl0790.58040MR1225459
  2. [APS] M.F. ATIYAH, V.K. PATODI, I.M. SINGER, Spectral asymmetry and Riemannian geometry. I., Math. Proc. Camb. Philos. Soc. 77 ( 1975), 43-69. Zbl0297.58008MR397797
  3. [BB] W. BALLMANN, J. BRÜNING, On the spectral theory of manifolds with cusps, J. Math. Pures Appl., 80-6 ( 2001), 593-625. Zbl1049.58026MR1842292
  4. [BH] O. BIQUARD, M. HERZLICH, A Burns-Epstein invariant for ACHE 4-manifolds, math.DG/0111218 A ( 2002). Zbl1074.53037
  5. [C] G. CARRON, L2 -cohomology of manifolds with flat ends, prépublication ( 2001). Zbl1103.58010
  6. [DX] H. DONNELLY, F. XAVIER, On the differential form spectrum of negatively curved riemannian manifolds, Amer. J. Math., 106 ( 1984), 169-185. Zbl0547.58034MR729759
  7. [EF] J.F. ESCOBAR, A. FREIRE, The differential form spectrum of manifolds of positive curvature, Duke Math. J., 69-2 ( 1993), 1-42. Zbl0791.53046MR1201689
  8. [L] J. LOTT, The zero-in-the-spectrum question, Enseign. Math., II Sér. 42-3 & 4 ( 1996), 341-376. Zbl0874.58086MR1426443
  9. [M] R. MAZZEO, The Hodge cohomology of a conformally compact metric, J. Differential Geom., 28-2 ( 1988),309-339. Zbl0656.53042MR961517
  10. [MP] R. MAZZEO, R.S. PHILLIPS, Hodge theory on hyperbolic manifolds, Duke Math. J., 60-2 ( 1990), 509-559. Zbl0712.58006MR1047764
  11. [Y] N. YEGANEFAR, Sur la L2 -cohomologie des variétés à courbure négative, prépublication ( 2002). 
  12. [Z] S. ZUCKER, L2 Cohomology of Warped Products and Arithmetic Groups, Inventiones Math., 70 ( 1982), 169-218. Zbl0508.20020MR684171

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.