Formes harmoniques sur les variétés asymptotiquement hyperboliques complexes
Séminaire de théorie spectrale et géométrie (2002-2003)
- Volume: 21, page 55-59
- ISSN: 1624-5458
Access Full Article
topHow to cite
topYeganefar, Nader. "Formes harmoniques $L^2$ sur les variétés asymptotiquement hyperboliques complexes." Séminaire de théorie spectrale et géométrie 21 (2002-2003): 55-59. <http://eudml.org/doc/114476>.
@article{Yeganefar2002-2003,
author = {Yeganefar, Nader},
journal = {Séminaire de théorie spectrale et géométrie},
keywords = {asymptotically complex hyperbolic; cohomology; harmonic form},
language = {fre},
pages = {55-59},
publisher = {Institut Fourier},
title = {Formes harmoniques $L^2$ sur les variétés asymptotiquement hyperboliques complexes},
url = {http://eudml.org/doc/114476},
volume = {21},
year = {2002-2003},
}
TY - JOUR
AU - Yeganefar, Nader
TI - Formes harmoniques $L^2$ sur les variétés asymptotiquement hyperboliques complexes
JO - Séminaire de théorie spectrale et géométrie
PY - 2002-2003
PB - Institut Fourier
VL - 21
SP - 55
EP - 59
LA - fre
KW - asymptotically complex hyperbolic; cohomology; harmonic form
UR - http://eudml.org/doc/114476
ER -
References
top- [A] N. ANGHEL, An abstract index theorem on non-compact Riemannian manifolds, Houston J. Math., 19-2 ( 1993), 223-237. Zbl0790.58040MR1225459
- [APS] M.F. ATIYAH, V.K. PATODI, I.M. SINGER, Spectral asymmetry and Riemannian geometry. I., Math. Proc. Camb. Philos. Soc. 77 ( 1975), 43-69. Zbl0297.58008MR397797
- [BB] W. BALLMANN, J. BRÜNING, On the spectral theory of manifolds with cusps, J. Math. Pures Appl., 80-6 ( 2001), 593-625. Zbl1049.58026MR1842292
- [BH] O. BIQUARD, M. HERZLICH, A Burns-Epstein invariant for ACHE 4-manifolds, math.DG/0111218 A ( 2002). Zbl1074.53037
- [C] G. CARRON, L2 -cohomology of manifolds with flat ends, prépublication ( 2001). Zbl1103.58010
- [DX] H. DONNELLY, F. XAVIER, On the differential form spectrum of negatively curved riemannian manifolds, Amer. J. Math., 106 ( 1984), 169-185. Zbl0547.58034MR729759
- [EF] J.F. ESCOBAR, A. FREIRE, The differential form spectrum of manifolds of positive curvature, Duke Math. J., 69-2 ( 1993), 1-42. Zbl0791.53046MR1201689
- [L] J. LOTT, The zero-in-the-spectrum question, Enseign. Math., II Sér. 42-3 & 4 ( 1996), 341-376. Zbl0874.58086MR1426443
- [M] R. MAZZEO, The Hodge cohomology of a conformally compact metric, J. Differential Geom., 28-2 ( 1988),309-339. Zbl0656.53042MR961517
- [MP] R. MAZZEO, R.S. PHILLIPS, Hodge theory on hyperbolic manifolds, Duke Math. J., 60-2 ( 1990), 509-559. Zbl0712.58006MR1047764
- [Y] N. YEGANEFAR, Sur la L2 -cohomologie des variétés à courbure négative, prépublication ( 2002).
- [Z] S. ZUCKER, L2 Cohomology of Warped Products and Arithmetic Groups, Inventiones Math., 70 ( 1982), 169-218. Zbl0508.20020MR684171
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.