Comment choisir une connexion au hasard ?

Thierry Lévy

Séminaire de théorie spectrale et géométrie (2002-2003)

  • Volume: 21, page 61-73
  • ISSN: 1624-5458

How to cite

top

Lévy, Thierry. "Comment choisir une connexion au hasard ?." Séminaire de théorie spectrale et géométrie 21 (2002-2003): 61-73. <http://eudml.org/doc/114477>.

@article{Lévy2002-2003,
author = {Lévy, Thierry},
journal = {Séminaire de théorie spectrale et géométrie},
keywords = {random connections; Yang-Mills measure},
language = {fre},
pages = {61-73},
publisher = {Institut Fourier},
title = {Comment choisir une connexion au hasard ?},
url = {http://eudml.org/doc/114477},
volume = {21},
year = {2002-2003},
}

TY - JOUR
AU - Lévy, Thierry
TI - Comment choisir une connexion au hasard ?
JO - Séminaire de théorie spectrale et géométrie
PY - 2002-2003
PB - Institut Fourier
VL - 21
SP - 61
EP - 73
LA - fre
KW - random connections; Yang-Mills measure
UR - http://eudml.org/doc/114477
ER -

References

top
  1. [1] Sergio ALBEVERIO, Raphael H∅EGH-KROHN, and Helge Holden. Stochastic Lie group-valued measures and their relations to stochastic curve integrals, gauge fields and Markov cosurfaces. In Stochastic processes - mathematics and physics (Bielefeld, 1984), pages 1-24. Springer, Berlin, 1986. Zbl0575.60068MR838556
  2. [2] Bruce K. DRIVER. YM2: continuum expectations, lattice convergence, and lassos. Comm. Math. Phys., 123(4):575-616, 1989. Zbl0819.58043MR1006295
  3. [3] Leonard GROSS. A Poincaré lemma for connection forms. J. Funct.Anal., 63(1): 1-46, 1985. Zbl0624.53021MR795515
  4. [4] Thierry LÉVY. Wilson loops in the light of spin networks, math-ph/0306059, 2003. Zbl1078.81059MR2098832
  5. [5] Thierry LÉVY. Yang-mills measure on compact surfaces. Mem. Amer. Math. Soc, To appear. Zbl1036.58009MR2006374
  6. [6] A.A. MIGDAL. Recursion equations in gauge field theories. Sov. Phys. JETP, 42(3):413-418, 1975. 
  7. [7] Ambar SENGUPTA. Gauge invariant functions of connections. Proc. Amer. Math. Soc, 121(3):897-905, 1994. Zbl0823.58007MR1215205
  8. [8] Ambar SENGUPTA. Gauge theory on compact-surfaces. Mem. Amer. Math. Soc, 126(6 00):viii+85, 1997, Zbl0873.58076MR1346931
  9. [9] Edward WITTEN. On quantum gauge theories in two dimensions. Comm. Math. Phys., 141(1): 153-209, 1991. Zbl0762.53063MR1133264
  10. [10] Edward WITTEN. Two-dimensional gauge theories revisited. J. Geom. Phys., 9(4):303-368, 1992. Zbl0768.53042MR1185834

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.