A generalisation of Teichmüller space in the hermitian context

Anna Wienhard

Séminaire de théorie spectrale et géométrie (2003-2004)

  • Volume: 22, page 103-123
  • ISSN: 1624-5458

How to cite

top

Wienhard, Anna. "A generalisation of Teichmüller space in the hermitian context." Séminaire de théorie spectrale et géométrie 22 (2003-2004): 103-123. <http://eudml.org/doc/114480>.

@article{Wienhard2003-2004,
author = {Wienhard, Anna},
journal = {Séminaire de théorie spectrale et géométrie},
keywords = {Hermitian symmetric spaces of noncompact type; Toledo invariant},
language = {eng},
pages = {103-123},
publisher = {Institut Fourier},
title = {A generalisation of Teichmüller space in the hermitian context},
url = {http://eudml.org/doc/114480},
volume = {22},
year = {2003-2004},
}

TY - JOUR
AU - Wienhard, Anna
TI - A generalisation of Teichmüller space in the hermitian context
JO - Séminaire de théorie spectrale et géométrie
PY - 2003-2004
PB - Institut Fourier
VL - 22
SP - 103
EP - 123
LA - eng
KW - Hermitian symmetric spaces of noncompact type; Toledo invariant
UR - http://eudml.org/doc/114480
ER -

References

top
  1. [1] ST. B. BRADLOW, and O. GARCÏA-PRADA, and R B. GOTHEN, Surface group representations and U(p, q)-Higgs bundies, J. Differential Geom. 64-1 ( 2003), 111-170. Zbl1070.53054MR2015045
  2. [2] M. BURGER, A. IOZZI, and A. WIENHARD, Maximal representations, in preparation. Zbl1035.32013
  3. [3] M. BURGER, A. IOZZI, and A. WIENHARD, Surface group representations with maximal Toledo invariant, C. R.Acad. Sci. Paris, Ser.I 336 ( 2003), 387-390. Zbl1035.32013MR1979350
  4. [4] S. CHOI and W. M. GOLDMAN, Convex real projective structures on closed surfaces are closed, Proc. Amer. Math. Soc. 118-2 ( 1993), 657-661. Zbl0810.57005MR1145415
  5. [5] J. L. CLERC and B. ØRSTED, The Gromov norm of the Kohier class and the Maslov index, Asian J. Math 7 ( 2003), 269-296. Zbl1079.53120MR2014967
  6. [6] A. DOMIC and D. TOLEDO, The Gromov norm of the Kohier class of symmetrie domains, Math. Ann. 276-3 ( 1987), 425-432. Zbl0595.53061MR875338
  7. [7] E.B. DYNKIN, Semisimple subalgebras of semisimple lie algebras, Am. Math. Soc, Transl., II Ser., vol. 6, AMS, 1957, pp. 111-243. Zbl0077.03404
  8. [8] W.M. GOLDMAN, Discontinuous groups and the Euler class, Thesis, University of California at Berkeley, 1980. 
  9. [9] W.M. GOLDMAN, Convex real projective structures on compact surfaces, J. Differential Geom. 31-3 ( 1990), 791-845. Zbl0711.53033MR1053346
  10. [10] E B. GOTHEN, Components of spaces of representations and stable triples, Topology 40-4 ( 2001), 823-850. Zbl1066.14012MR1851565
  11. [11] L. HERNÀNDEZ LAMONEDA, Maximal representations of surface groups in bounded symmetrie domains, Trans. Amer. Math. Soc. 324 ( 1991), 405-420. Zbl0733.32024MR1033234
  12. [12] N.J. HITCHIN, Lie groups and Teichmüller space, Topology 31-3 ( 1992), 449-473. Zbl0769.32008MR1174252
  13. [13] E. LABOURIE, Anosov flows, surface groups and curves in projective space, math.DG/0401230, 2003. Zbl1103.32007
  14. [14] J. MILNOR, On the existence of a connection with curvature zero, Comment. Math. Helv. 32 ( 1958), 215-223. Zbl0196.25101MR95518
  15. [15] I. SATAKE, Algebraic structures of symmetrie domains, Kanô Memorial Lectures, vol. 4, Iwanami Snoten, Tokyo, 1980. Zbl0483.32017MR591460
  16. [16] D. TOLEDO, Representations of surface groups in complex hyperbolic space, J. Diff. Geom. 29-1 ( 1989), 125-133. Zbl0676.57012MR978081
  17. [17] Ë.B. VINBERG (ed.), Lie groups and Lie algebras, III, Encyclopaedia of Mathematical Sciences, vol. 41, Springer-Verlag, Berlin, 1994, Structure of Lie groups and Lie algebras, A translation of Current problems in mathematics. Fundamental directions. Vol 41 (Russian), Akad. Nauk SSSR, Vsesoyuz. Inst. Nauchn. i Tekhn. Inform., Moscow, 1990[MR91b:22001], Translation by V. Minachin [V V. Minakhin], Translation edited by A. L. Onishchik and È. B.Vinberg. Zbl0797.22001MR1349140
  18. [18] A. WIENHARD, Bounded cohomology and geometry, Ph. D. thesis, University Bonn, 2004. Zbl1084.32013MR2205508
  19. [19] E.Z. XIA, The moduli of flat U (p, 1) structures on Riemann surfaces, preprint, 2001. Zbl1050.14022MR2003688

NotesEmbed ?

top

You must be logged in to post comments.