A generalisation of Teichmüller space in the hermitian context

Anna Wienhard

Séminaire de théorie spectrale et géométrie (2003-2004)

  • Volume: 22, page 103-123
  • ISSN: 1624-5458

How to cite

top

Wienhard, Anna. "A generalisation of Teichmüller space in the hermitian context." Séminaire de théorie spectrale et géométrie 22 (2003-2004): 103-123. <http://eudml.org/doc/114480>.

@article{Wienhard2003-2004,
author = {Wienhard, Anna},
journal = {Séminaire de théorie spectrale et géométrie},
keywords = {Hermitian symmetric spaces of noncompact type; Toledo invariant},
language = {eng},
pages = {103-123},
publisher = {Institut Fourier},
title = {A generalisation of Teichmüller space in the hermitian context},
url = {http://eudml.org/doc/114480},
volume = {22},
year = {2003-2004},
}

TY - JOUR
AU - Wienhard, Anna
TI - A generalisation of Teichmüller space in the hermitian context
JO - Séminaire de théorie spectrale et géométrie
PY - 2003-2004
PB - Institut Fourier
VL - 22
SP - 103
EP - 123
LA - eng
KW - Hermitian symmetric spaces of noncompact type; Toledo invariant
UR - http://eudml.org/doc/114480
ER -

References

top
  1. [1] ST. B. BRADLOW, and O. GARCÏA-PRADA, and R B. GOTHEN, Surface group representations and U(p, q)-Higgs bundies, J. Differential Geom. 64-1 ( 2003), 111-170. Zbl1070.53054MR2015045
  2. [2] M. BURGER, A. IOZZI, and A. WIENHARD, Maximal representations, in preparation. Zbl1035.32013
  3. [3] M. BURGER, A. IOZZI, and A. WIENHARD, Surface group representations with maximal Toledo invariant, C. R.Acad. Sci. Paris, Ser.I 336 ( 2003), 387-390. Zbl1035.32013MR1979350
  4. [4] S. CHOI and W. M. GOLDMAN, Convex real projective structures on closed surfaces are closed, Proc. Amer. Math. Soc. 118-2 ( 1993), 657-661. Zbl0810.57005MR1145415
  5. [5] J. L. CLERC and B. ØRSTED, The Gromov norm of the Kohier class and the Maslov index, Asian J. Math 7 ( 2003), 269-296. Zbl1079.53120MR2014967
  6. [6] A. DOMIC and D. TOLEDO, The Gromov norm of the Kohier class of symmetrie domains, Math. Ann. 276-3 ( 1987), 425-432. Zbl0595.53061MR875338
  7. [7] E.B. DYNKIN, Semisimple subalgebras of semisimple lie algebras, Am. Math. Soc, Transl., II Ser., vol. 6, AMS, 1957, pp. 111-243. Zbl0077.03404
  8. [8] W.M. GOLDMAN, Discontinuous groups and the Euler class, Thesis, University of California at Berkeley, 1980. 
  9. [9] W.M. GOLDMAN, Convex real projective structures on compact surfaces, J. Differential Geom. 31-3 ( 1990), 791-845. Zbl0711.53033MR1053346
  10. [10] E B. GOTHEN, Components of spaces of representations and stable triples, Topology 40-4 ( 2001), 823-850. Zbl1066.14012MR1851565
  11. [11] L. HERNÀNDEZ LAMONEDA, Maximal representations of surface groups in bounded symmetrie domains, Trans. Amer. Math. Soc. 324 ( 1991), 405-420. Zbl0733.32024MR1033234
  12. [12] N.J. HITCHIN, Lie groups and Teichmüller space, Topology 31-3 ( 1992), 449-473. Zbl0769.32008MR1174252
  13. [13] E. LABOURIE, Anosov flows, surface groups and curves in projective space, math.DG/0401230, 2003. Zbl1103.32007
  14. [14] J. MILNOR, On the existence of a connection with curvature zero, Comment. Math. Helv. 32 ( 1958), 215-223. Zbl0196.25101MR95518
  15. [15] I. SATAKE, Algebraic structures of symmetrie domains, Kanô Memorial Lectures, vol. 4, Iwanami Snoten, Tokyo, 1980. Zbl0483.32017MR591460
  16. [16] D. TOLEDO, Representations of surface groups in complex hyperbolic space, J. Diff. Geom. 29-1 ( 1989), 125-133. Zbl0676.57012MR978081
  17. [17] Ë.B. VINBERG (ed.), Lie groups and Lie algebras, III, Encyclopaedia of Mathematical Sciences, vol. 41, Springer-Verlag, Berlin, 1994, Structure of Lie groups and Lie algebras, A translation of Current problems in mathematics. Fundamental directions. Vol 41 (Russian), Akad. Nauk SSSR, Vsesoyuz. Inst. Nauchn. i Tekhn. Inform., Moscow, 1990[MR91b:22001], Translation by V. Minachin [V V. Minakhin], Translation edited by A. L. Onishchik and È. B.Vinberg. Zbl0797.22001MR1349140
  18. [18] A. WIENHARD, Bounded cohomology and geometry, Ph. D. thesis, University Bonn, 2004. Zbl1084.32013MR2205508
  19. [19] E.Z. XIA, The moduli of flat U (p, 1) structures on Riemann surfaces, preprint, 2001. Zbl1050.14022MR2003688

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.