A Berezin-type map and a class of weighted composition operators
In this paper we consider the map L defined on the Bergman space [...] of the right half plane [...] .
In this paper we consider the map L defined on the Bergman space [...] of the right half plane [...] .
The group SU(1,d) acts naturally on the Hilbert space , where B is the unit ball of and the weighted measure . It is proved that the irreducible decomposition of the space has finitely many discrete parts and a continuous part. Each discrete part corresponds to a zero of the generalized Harish-Chandra c-function in the lower half plane. The discrete parts are studied via invariant Cauchy-Riemann operators. The representations on the discrete parts are equivalent to actions on some holomorphic...
In questa Nota viene dato un nuovo metodo elementare per determinare il gruppo degli automorfismi del primo dominio classico. In una Nota successiva, con procedimenti del tutto analoghi verranno determinati i gruppi degli automorfismi del terzo e del quarto dominio classico.
In questa Nota vengono determinati, con un nuovo metodo elementare, i gruppi di automorfismi del terzo e del quarto dominio classico. Gli strumenti utilizzati sono quelli già introdotti nella precedente Nota, ove erano stati usati per determinare il gruppo degli automorfismi del primo dominio classico.
Let be a Hermitian symmetric space of the non-compact type and let be a discrete series representation of which is holomorphically induced from a unitary irreducible representation of . In the paper [B. Cahen, Berezin quantization for holomorphic discrete series representations: the non-scalar case, Beiträge Algebra Geom., DOI 10.1007/s13366-011-0066-2], we have introduced a notion of complex-valued Berezin symbol for an operator acting on the space of . Here we study the corresponding...
Every homogeneous circular convex domain (a bounded symmetric domain) gives rise to two interesting Lie groups: The semi-simple group of all biholomorphic automorphisms of and its isotropy subgroup at the origin (a maximal compact subgroup of ). The group acts in a natural way on the compact dual of (a certain compactification of that generalizes the Riemann sphere in case is the unit disk in ). Various authors have studied the orbit structure of the -space , here we are interested...