Géométrie systolique des variétés de groupe fondamental
Séminaire de théorie spectrale et géométrie (2003-2004)
- Volume: 22, page 25-52
- ISSN: 1624-5458
Access Full Article
topHow to cite
topBabenko, Ivan K.. "Géométrie systolique des variétés de groupe fondamental $\mathbf {Z}^2$." Séminaire de théorie spectrale et géométrie 22 (2003-2004): 25-52. <http://eudml.org/doc/114483>.
@article{Babenko2003-2004,
author = {Babenko, Ivan K.},
journal = {Séminaire de théorie spectrale et géométrie},
keywords = {systole; volume; fundamental group},
language = {fre},
pages = {25-52},
publisher = {Institut Fourier},
title = {Géométrie systolique des variétés de groupe fondamental $\mathbf \{Z\}^2$},
url = {http://eudml.org/doc/114483},
volume = {22},
year = {2003-2004},
}
TY - JOUR
AU - Babenko, Ivan K.
TI - Géométrie systolique des variétés de groupe fondamental $\mathbf {Z}^2$
JO - Séminaire de théorie spectrale et géométrie
PY - 2003-2004
PB - Institut Fourier
VL - 22
SP - 25
EP - 52
LA - fre
KW - systole; volume; fundamental group
UR - http://eudml.org/doc/114483
ER -
References
top- [1] I. BABENKO, Asymptotic invariants of smooth manifolds, Russian Acad. Sci. Izv. Math., Vol. 41 ( 1993), pp. 1-38. Zbl0812.57022MR1208148
- [2] I. BABENKO and M. KATZ, Systolic freedom of orientable manifolds, Ann. scient. Éc. Norm. Sup., 4e série, T 31 ( 1998), pp. 787-809. Zbl0944.53019MR1664222
- [3] I. BABENKO, M. KATZ and A. Suciu, Volumes, middle-dimensional systoles, and Whitehead products, Math. Res. Lett., Vol 5, ( 1998), pp. 461-471. Zbl0933.53022MR1653310
- [4] I. BABENKO, Forte souplesse intersystolique de variétés fermées et de polyèdres, Annales de l'Institut Fourier, Vol 52-5 ( 2002), pp. 1259-1284. Zbl1023.53025MR1927080
- [5] C. BAVARD, Inégalité isopérimétrique pour la bouteille de Klein, Math. Annalen., Vol 274 ( 1986), pp. 439-441. Zbl0578.53032MR842624
- [6] M. BERGER, A l'ombre de Loewner, Ann. scient. Éc. Norm. Sup., T 5, ( 1972), pp. 241-260. Zbl0237.53035MR309009
- [7] M. BERGER, Systoles et applications selon Gromov, exposé 771 Séminaire N. Bourbaki 1992/93 Astérisque, Vol 216 ( 1993), pp. 279-310. Zbl0789.53040MR1246401
- [8] M. BERGER, Riemannian geometry during the second half of the twentieth century, Jahresber. Deutsch. Math.-Verein, Vol 100 ( 1998), pp. 45-208. Zbl0928.53001MR1637246
- [9] D.B.A. EPSTEIN, The degree of a map, Proc. of London Math. Soc.Vol 16(3) ( 1966), pp. 369-383. Zbl0148.43103MR192475
- [10] I.I. GORDON, Classification of the mappings of closed surfaces into the projective plane. Doklady Akad. Nauk SSSR (N.S.) Vol 78 ( 1951), pp. 625-627. Zbl0042.17501MR42701
- [11] I.I. GORDON, Classification of the mappings of an n-dimensional complex into an n-dimensional real projective space. Izvestiya Akad. Nauk SSSR. Ser. Mat., Vol 16 ( 1952), pp. 113-146. Zbl0046.16702MR47320
- [12] M. GROMOV, Systoles and intersystolic inequalities, (Actes de la table ronde de géométrie différentielle en l'honeur de Marcel Berger, Collection SMF n°l ( 1996), pp. 291-362. Zbl0877.53002MR1427763
- [13] M. GROMOV, Fitting Riemannian manifolds, J. Diff. Geom., Vol 18, ( 1983), pp. 1-147. Zbl0515.53037MR697984
- [14] M. GROMOV, Metricstructures for Riemannian and non-Riemannian spaces, Birkhâuser, 1999. Zbl0953.53002MR1699320
- [15] M. KATZ and A. Suciu, Volume of Riemannian manifolds, geometrie inequalities, and homotopy theory, in Rothenberg Festschrift (M. Farber, W. Lueck, S. Weinberger, eds), Contemporary Mathematics, AMS, 1999. Zbl0967.53024MR1705579
- [16] C. CROKE, M. KATZ, Universal volume bounds in Riemannian manifolds, Surveys in Differential Geometry, Vol VIII ( 2003), pp. 109-137. Zbl1051.53026MR2039987
- [17] P. OLUM, Mapping of manifolds and the notion of degree, Annals of Math., Vol 58(2) ( 1953), pp. 458-480. Zbl0052.19901MR58212
- [18] L.S. PONTRRYAGIN, Foundations of'combinatorial Topology, Graylock Press, 1952. Zbl0049.39901
- [19] M.M. POSTNIKOV, Lectures on algebraic topology. Homotopy theory ofcell complexes. "Nauka", Moscow, 1985. Zbl0578.55001MR792301
- [20] PM. PU, Some inequalities in certain non-orientable Riemannian manifolds, Pacific J. of Math., Vol 2 ( 1952), pp. 55-71. MR48886
- [21] E.H. SPANIER, Algebraic topology, McGraw-Hill Book Company, 1966. Zbl0145.43303MR210112
- [22] A.H. WRIGHT, Monotone Mappings and Degree One Mappings Between PL-Manifolds, Geometrie Topology, Proc. Conf. Parc City, Utah, 1974, Lecture Notes in Math., Vol 438, Springer-Verlag, Berlin ( 1975), pp. 441-459. Zbl0309.55006MR394690
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.