Systolic freedom of orientable manifolds

Ivan Babenko; Mikhail Katz

Annales scientifiques de l'École Normale Supérieure (1998)

  • Volume: 31, Issue: 6, page 787-809
  • ISSN: 0012-9593

How to cite

top

Babenko, Ivan, and Katz, Mikhail. "Systolic freedom of orientable manifolds." Annales scientifiques de l'École Normale Supérieure 31.6 (1998): 787-809. <http://eudml.org/doc/82478>.

@article{Babenko1998,
author = {Babenko, Ivan, Katz, Mikhail},
journal = {Annales scientifiques de l'École Normale Supérieure},
keywords = {systoles; isosystolic inequality; systolic freedom},
language = {eng},
number = {6},
pages = {787-809},
publisher = {Elsevier},
title = {Systolic freedom of orientable manifolds},
url = {http://eudml.org/doc/82478},
volume = {31},
year = {1998},
}

TY - JOUR
AU - Babenko, Ivan
AU - Katz, Mikhail
TI - Systolic freedom of orientable manifolds
JO - Annales scientifiques de l'École Normale Supérieure
PY - 1998
PB - Elsevier
VL - 31
IS - 6
SP - 787
EP - 809
LA - eng
KW - systoles; isosystolic inequality; systolic freedom
UR - http://eudml.org/doc/82478
ER -

References

top
  1. [1] I. BABENKO, Asymptotic invariants of smooth manifolds, (Russian Acad. Sci. Izv. Math., Vol. 41, 1993, pp. 1-38). Zbl0812.57022MR94d:53068
  2. [2] I. BABENKO, M. KATZ and A. SUCIU, Volumes, middle-dimensional systoles, and Whitehead products, (Math. Res. Lett., Vol. 5, 1998, pp. 461-471 and http://front.math.ucdavis.edu/math.DG/9707116). Zbl0933.53022MR99m:53084
  3. [3] V. BANGERT, Minimal geodesics, (Ergod. Th. and Dynam. Sys., Vol. 10, 1990, pp. 263-286). Zbl0676.53055MR91j:58126
  4. [4] L. BÉRARD BERGERY and M. KATZ, Intersystolic inequalities in dimension 3, (Geometric and Functional Analysis, Vol. 4, No. 6, 1994, pp. 621-632). Zbl0831.53046MR95i:53036
  5. [5] L. BÉRARD BERGERY and M. KATZ, Homogeneous freedom in middle dimension, in progress. Zbl0831.53046
  6. [6] M. BERGER, Du côté de chez Pu, (Ann. Scient. Éc. Norm. Sup., Vol. 5, 1972, pp. 1-44). Zbl0227.52005MR46 #8119
  7. [7] M. BERGER, A l'ombre de Loewner, (Ann. Scient. Éc. Norm. Sup., Vol. 5, 1972, pp. 241-260). Zbl0237.53035MR46 #8120
  8. [8] M. BERGER, Systoles et applications selon Gromov, exposé 771, Séminaire N. Bourbaki, (Astérisque, Vol. 216, 1993, pp. 279-310, Société Mathématique de France). Zbl0789.53040MR94j:53042
  9. [9] M. BERGER, Private communication (1 March 1994). MR95k:35184
  10. [10] M. BERGER, Riemannian geometry during the second half of the twentieth century, (I.H.E.S., preprint, March 1997). 
  11. [11] A. BESICOWITCH, On two problems of Loewner, (J. London Math. Soc., Vol. 27, 1952, pp. 141-144). Zbl0046.05304MR13,831d
  12. [12] R. BOTT, The stable homotopy of the classical groups, (Ann. Math., Vol. 70, 1959, pp. 313-337). Zbl0129.15601MR22 #987
  13. [13] Yu. BURAGO and V. ZALGALLER, Geometric inequalities, Springer, 1988. 
  14. [14] M. do CARMO, Riemannian geometry, Birkhäuser, 1992. Zbl0752.53001MR92i:53001
  15. [15] E. CARTAN, La topologie des espaces représentatifs des groupes de Lie, (Act. Sci. Ind., n. 358, Hermann, Paris 1936). Zbl0015.20401
  16. [16] J. CASSELS, Rational quadratic forms, Academic Press, 1978. Zbl0395.10029MR80m:10019
  17. [17] B. COLBOIS and J. DODZIUK, Riemannian Metrics with Large λ1, (Proc. Amer. Math. Soc., Vol. 122, 1994, pp. 905-906). Zbl0820.58056MR95a:58130
  18. [18] G. COURTOIS, Exemple de variété riemannienne et de spectre, in Rencontres de théorie spectrale et géométrie, Grenoble 1991. 
  19. [19] J. DIEUDONNÉ, A history of algebraic and differential topology 1900-1960, Birkhäuser, 1989. Zbl0673.55002MR90g:01029
  20. [20] J. DODZIUK, Nonexistence of universal upper bounds for the first positive eigenvalue of the Laplace-Beltrami operator, Proceedings of the 1993 Joint Summer Research Conference on Spectral Geometry, (Contemporary Mathematics, Vol. 173, 1994, pp. 109-114). Zbl0810.58042MR95m:53052
  21. [21] B. DUBROVIN, A. FOMENKO and S. NOVIKOV, Modern geometry-methods and applications. Part II. The geometry and topology of manifolds, Graduate Texts in Mathematics 104. Springer, 1985. Zbl0565.57001MR86m:53001
  22. [22] Encyclopedic dictionary of mathematics, Second Edition (Japanese encyclopedia). The MIT Press, 1987. Zbl0674.00025
  23. [23] H. FEDERER, Real flat chains, cochains and variational problems, (Indiana Univ. Math. J., Vol. 24, 1974, pp. 351-407). Zbl0289.49044MR50 #1095
  24. [24] H. FEDERER and W. FLEMING, Normal and integral currents, (Ann. of Math., Vol. 72, 1960, pp. 458-520). Zbl0187.31301MR23 #A588
  25. [25] A. FOMENKO, D. FUCHS and V. GUTENMACHER, Homotopic topology, Akadémiai Kiadó, Budapest, 1986. Zbl0615.55001MR88f:55001
  26. [26] S. GALLOT, D. HULIN and J. LAFONTAINE, Riemannian Geometry, Springer, 1987. Zbl0636.53001MR88k:53001
  27. [27] M. GLEZERMAN and L. PONTRYAGIN, Intersections in manifolds, (Amer Math. Soc. Translations, No. 50, 1951 (Translation of Uspehi Matematicheskih Nauk (N.S.), Vol. 2, no. 1 (17), 1947, pp. 50-155). 
  28. [28] C. GODBILLON, Topologie algébrique, Hermann, Paris, 1971. Zbl0218.55001MR46 #880
  29. [29] M. GREENBERG and J. HARPER, Algebraic topology : a first course, Addison-Wesley, 1981. Zbl0498.55001MR83b:55001
  30. [30] M. GROMOV, Structures métriques pour les variétés riemanniennes, (edited by J. Lafontaine and P. Pansu). Cedic, 1981. Zbl0509.53034MR85e:53051
  31. [31] M. GROMOV, Filling Riemannian manifolds, (J. Diff. Geom., Vol. 18, 1983, pp. 1-147). Zbl0515.53037MR85h:53029
  32. [32] M. GROMOV, Systoles and intersystolic inequalities, (I.H.E.S., preprint, 1992). Zbl0877.53002
  33. [33] M. GROMOV, Metric invariants of Kähler manifolds, in Proc. Differential Geometry and Topology, R. Caddeo, F. Tricerri ed., World Sci., 1993. Zbl0888.53047
  34. [34] M. GROMOV, Systoles and intersystolic inequalities, pp. 291-362, in A. Besse, Actes de la table ronde de géométrie différentielle en l'honneur de Marcel Berger (Séminaires et Congrès 1, Société Mathématique de France, 1996). Zbl0877.53002MR99a:53051
  35. [35] M. GROMOV, Metric structures for Riemannian and non-Riemannian spaces, Progr. Math., vol. 152, Birkhäuser, Boston, MA, 1998. Zbl0953.53002MR2000d:53065
  36. [36] J. HEBDA, The collars of a Riemannian manifold and stable isosystolic inequalities, (Pacific J. Math., Vol. 121, 1986, pp. 339-356). Zbl0607.53043MR87e:53064
  37. [37] P. HILTON, On the homotopy groups of the union of spheres, (J. London Math. Soc., Vol. 30, 1955, pp. 154-172). Zbl0064.17301MR16,847d
  38. [38] M. KATZ, Counter-examples to isosystolic inequalities, (Geometriae Dedicata, Vol. 57, 1995, pp. 195-206). Zbl0842.53031MR97d:53046
  39. [39] S. LEFSCHETZ, Intersections and transformations of complexes and manifolds, (Trans. Amer. Math. Soc., Vol. 28, 1926, pp. 1-49). Zbl52.0572.02MR1501331JFM52.0572.02
  40. [40] R. MANDELBAUM, Four-dimensional Topology : an introduction, (Bull. Am. Math. Soc., Vol. 2, 1980, pp. 1-159). Zbl0476.57005MR81j:57001
  41. [41] J. MILNOR and J. STASHEFF, Characteristic classes, Princeton University Press, 1974. Zbl0298.57008MR55 #13428
  42. [42] C. PITTET, Systoles on S1 × Sn, (Diff. Geom. Appl., Vol. 7, 1997, pp. 139-142). Zbl0878.53038MR98i:53061
  43. [43] P. PU, Some inequalities in certain nonorientable manifolds, (Pacific J. Math., Vol. 2, 1952, pp. 55-71). Zbl0046.39902MR14,87e
  44. [44] J. SCHWARTZ, Differential geometry and Topology, Gordon and Breach, New York, 1968. Zbl0187.45006
  45. [45] J.-P. SERRE, Cours d'arithmétique, Presses Universitaires de France, 1970. Zbl0225.12002MR41 #138
  46. [46] R. THOM, Quelques propriétés globales des variétés différentiables, (Comment. Math. Helv., Vol. 28, 1954, pp. 17-86). Zbl0057.15502MR15,890a
  47. [47] G. WHITEHEAD, Elements of homotopy theory, Springer, 1978. Zbl0406.55001MR80b:55001
  48. [48] M. KATZ, Appendix D to [35]. 
  49. [49] M. KATZ and A. SUCIU, Volume of Riemannian manifolds, geometric inequalities, and homotopy theory, in Rothenberg Festschrift (M. Farber, W. Lueck, S. Weinberger, eds.), Contemporary Mathematics, AMS (1999). Available at http://xxx.lanl.gov/abs/math.DG/9810172. Zbl0967.53024MR2000i:53063

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.