The Gluck and Ziller problem with the euclidean metric

Vincent Borrelli

Séminaire de théorie spectrale et géométrie (2003-2004)

  • Volume: 22, page 83-92
  • ISSN: 1624-5458

How to cite

top

Borrelli, Vincent. "The Gluck and Ziller problem with the euclidean metric." Séminaire de théorie spectrale et géométrie 22 (2003-2004): 83-92. <http://eudml.org/doc/114487>.

@article{Borrelli2003-2004,
author = {Borrelli, Vincent},
journal = {Séminaire de théorie spectrale et géométrie},
keywords = {unit tangent bundle; minimum volume; Hopf fibration},
language = {eng},
pages = {83-92},
publisher = {Institut Fourier},
title = {The Gluck and Ziller problem with the euclidean metric},
url = {http://eudml.org/doc/114487},
volume = {22},
year = {2003-2004},
}

TY - JOUR
AU - Borrelli, Vincent
TI - The Gluck and Ziller problem with the euclidean metric
JO - Séminaire de théorie spectrale et géométrie
PY - 2003-2004
PB - Institut Fourier
VL - 22
SP - 83
EP - 92
LA - eng
KW - unit tangent bundle; minimum volume; Hopf fibration
UR - http://eudml.org/doc/114487
ER -

References

top
  1. [1] V. BORRELLI AND O. GIL-MEDRANO, A critical radius for unit Hopf vector fields on spheres, Preprint. Zbl1115.53025MR2209254
  2. [2] B.-Y. CHEN, Riemannian submanifolds, Handbook of Differential Geometry, Vol 1, 2000, Elsevier. Zbl0968.53002MR1736854
  3. [3] O. GIL-MEDRANOVolume and Energy of vector fields on spheres. A survey, Differential Geometry,Valencia 2001,167-178,World Sci. Publishing, River Edge,NJ2002. Zbl1029.53074MR1922046
  4. [4] O. GIL-MEDRANOUnit vector fields that are critical points of the volume and the energy : characterization and examples, to appear in Complex, contact and symmetric spaces : papers in honour of Lieven Vanheche. Progress in Math. Birkhauser. Zbl1075.53055MR2105148
  5. [5] O. GIL-MEDRANO AND E. LLINARES-FUSTER, Second variation of Volume and Energy of vector fields. Stabilit of Hopf vector fields, Math. Ann. 320 ( 2001), 531-545. Zbl0989.53020MR1846776
  6. [6] H. GLUCK AND W. ZILLER, On the volume of a unit vector field on the three-sphere, Comment Math. Helv. 61 ( 1986), 177-192. Zbl0605.53022MR856085

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.