The Gluck and Ziller problem with the euclidean metric
Séminaire de théorie spectrale et géométrie (2003-2004)
- Volume: 22, page 83-92
- ISSN: 1624-5458
Access Full Article
topHow to cite
topBorrelli, Vincent. "The Gluck and Ziller problem with the euclidean metric." Séminaire de théorie spectrale et géométrie 22 (2003-2004): 83-92. <http://eudml.org/doc/114487>.
@article{Borrelli2003-2004,
author = {Borrelli, Vincent},
journal = {Séminaire de théorie spectrale et géométrie},
keywords = {unit tangent bundle; minimum volume; Hopf fibration},
language = {eng},
pages = {83-92},
publisher = {Institut Fourier},
title = {The Gluck and Ziller problem with the euclidean metric},
url = {http://eudml.org/doc/114487},
volume = {22},
year = {2003-2004},
}
TY - JOUR
AU - Borrelli, Vincent
TI - The Gluck and Ziller problem with the euclidean metric
JO - Séminaire de théorie spectrale et géométrie
PY - 2003-2004
PB - Institut Fourier
VL - 22
SP - 83
EP - 92
LA - eng
KW - unit tangent bundle; minimum volume; Hopf fibration
UR - http://eudml.org/doc/114487
ER -
References
top- [1] V. BORRELLI AND O. GIL-MEDRANO, A critical radius for unit Hopf vector fields on spheres, Preprint. Zbl1115.53025MR2209254
- [2] B.-Y. CHEN, Riemannian submanifolds, Handbook of Differential Geometry, Vol 1, 2000, Elsevier. Zbl0968.53002MR1736854
- [3] O. GIL-MEDRANOVolume and Energy of vector fields on spheres. A survey, Differential Geometry,Valencia 2001,167-178,World Sci. Publishing, River Edge,NJ2002. Zbl1029.53074MR1922046
- [4] O. GIL-MEDRANOUnit vector fields that are critical points of the volume and the energy : characterization and examples, to appear in Complex, contact and symmetric spaces : papers in honour of Lieven Vanheche. Progress in Math. Birkhauser. Zbl1075.53055MR2105148
- [5] O. GIL-MEDRANO AND E. LLINARES-FUSTER, Second variation of Volume and Energy of vector fields. Stabilit of Hopf vector fields, Math. Ann. 320 ( 2001), 531-545. Zbl0989.53020MR1846776
- [6] H. GLUCK AND W. ZILLER, On the volume of a unit vector field on the three-sphere, Comment Math. Helv. 61 ( 1986), 177-192. Zbl0605.53022MR856085
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.