On a Class of Vertex Folkman Numbers
Serdica Mathematical Journal (2002)
- Volume: 28, Issue: 3, page 219-232
- ISSN: 1310-6600
Access Full Article
topAbstract
topHow to cite
topNenov, Nedyalko. "On a Class of Vertex Folkman Numbers." Serdica Mathematical Journal 28.3 (2002): 219-232. <http://eudml.org/doc/11558>.
@article{Nenov2002,
abstract = {Let a1 , . . . , ar, be positive integers, i=1 ... r, m = ∑(ai − 1) + 1 and
p = max\{a1 , . . . , ar \}. For a graph G the symbol G → (a1 , . . . , ar ) means
that in every r-coloring of the vertices of G there exists a monochromatic
ai -clique of color i for some i ∈ \{1, . . . , r\}. In this paper we consider the
vertex Folkman numbers
F (a1 , . . . , ar ; m − 1) = min |V (G)| : G → (a1 , . . . , ar ) and Km−1 ⊂ G\}
We prove that F (a1 , . . . , ar ; m − 1) = m + 6, if p = 3 and m ≧ 6 (Theorem
3) and F (a1 , . . . , ar ; m − 1) = m + 7, if p = 4 and m ≧ 6 (Theorem 4).},
author = {Nenov, Nedyalko},
journal = {Serdica Mathematical Journal},
keywords = {Vertex Folkman Graph; Vertex Folkman Number; vertex Folkman graph; vertex Folkman number},
language = {eng},
number = {3},
pages = {219-232},
publisher = {Institute of Mathematics and Informatics Bulgarian Academy of Sciences},
title = {On a Class of Vertex Folkman Numbers},
url = {http://eudml.org/doc/11558},
volume = {28},
year = {2002},
}
TY - JOUR
AU - Nenov, Nedyalko
TI - On a Class of Vertex Folkman Numbers
JO - Serdica Mathematical Journal
PY - 2002
PB - Institute of Mathematics and Informatics Bulgarian Academy of Sciences
VL - 28
IS - 3
SP - 219
EP - 232
AB - Let a1 , . . . , ar, be positive integers, i=1 ... r, m = ∑(ai − 1) + 1 and
p = max{a1 , . . . , ar }. For a graph G the symbol G → (a1 , . . . , ar ) means
that in every r-coloring of the vertices of G there exists a monochromatic
ai -clique of color i for some i ∈ {1, . . . , r}. In this paper we consider the
vertex Folkman numbers
F (a1 , . . . , ar ; m − 1) = min |V (G)| : G → (a1 , . . . , ar ) and Km−1 ⊂ G}
We prove that F (a1 , . . . , ar ; m − 1) = m + 6, if p = 3 and m ≧ 6 (Theorem
3) and F (a1 , . . . , ar ; m − 1) = m + 7, if p = 4 and m ≧ 6 (Theorem 4).
LA - eng
KW - Vertex Folkman Graph; Vertex Folkman Number; vertex Folkman graph; vertex Folkman number
UR - http://eudml.org/doc/11558
ER -
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.