A Wong-Rosay type theorem for proper holomorphic self-maps
- [1] Institut de Recherche Mathématique Avancée, UMR 7501, Université de Strasbourg et CNRS, 7 rue René Descartes, 67000 Strasbourg, France.
 
Annales de la faculté des sciences de Toulouse Mathématiques (2010)
- Volume: 19, Issue: 3-4, page 513-524
 - ISSN: 0240-2963
 
Access Full Article
topAbstract
topHow to cite
topOpshtein, Emmanuel. "A Wong-Rosay type theorem for proper holomorphic self-maps." Annales de la faculté des sciences de Toulouse Mathématiques 19.3-4 (2010): 513-524. <http://eudml.org/doc/115854>.
@article{Opshtein2010,
	abstract = {In this short paper, we show that the only proper holomorphic self-maps of bounded domains in $\mathbb\{C\}^k$ whose iterates approach a strictly pseudoconvex point of the boundary are automorphisms of the euclidean ball. This is a Wong-Rosay type theorem for a sequence of maps whose degrees are a priori unbounded.},
	affiliation = {Institut de Recherche Mathématique Avancée, UMR 7501, Université de Strasbourg et CNRS, 7 rue René Descartes, 67000 Strasbourg, France.},
	author = {Opshtein, Emmanuel},
	journal = {Annales de la faculté des sciences de Toulouse Mathématiques},
	keywords = {proper holomorphic mapping; automorphism group},
	language = {eng},
	number = {3-4},
	pages = {513-524},
	publisher = {Université Paul Sabatier, Toulouse},
	title = {A Wong-Rosay type theorem for proper holomorphic self-maps},
	url = {http://eudml.org/doc/115854},
	volume = {19},
	year = {2010},
}
TY  - JOUR
AU  - Opshtein, Emmanuel
TI  - A Wong-Rosay type theorem for proper holomorphic self-maps
JO  - Annales de la faculté des sciences de Toulouse Mathématiques
PY  - 2010
PB  - Université Paul Sabatier, Toulouse
VL  - 19
IS  - 3-4
SP  - 513
EP  - 524
AB  - In this short paper, we show that the only proper holomorphic self-maps of bounded domains in $\mathbb{C}^k$ whose iterates approach a strictly pseudoconvex point of the boundary are automorphisms of the euclidean ball. This is a Wong-Rosay type theorem for a sequence of maps whose degrees are a priori unbounded.
LA  - eng
KW  - proper holomorphic mapping; automorphism group
UR  - http://eudml.org/doc/115854
ER  - 
References
top- Alexander (H.).— Holomorphic mappings from the ball and polydisc. Math. Ann., 209:249-256 (1974). Zbl0272.32006MR352531
 - Bell (S.).— Local boundary behavior of proper holomorphic mappings. In Complex analysis of several variables (Madison, Wis., 1982), volume 41 of Proc. Sympos. Pure Math., p. 1-7. Amer. Math. Soc., Providence, RI (1984). Zbl0537.32005MR740867
 - Berteloot (F.).— Attraction des disques analytiques et continuité höldérienne d’applications holomorphes propres. In Topics in complex analysis (Warsaw, 1992), volume 31 of Banach Center Publ., p. 91-98. Polish Acad. Sci., Warsaw (1995). Zbl0831.32012MR1341379
 - Boggess (A.).— CR manifolds and the tangential Cauchy-Riemann complex. Studies in Advanced Mathematics. CRC Press, Boca Raton, FL (1991). Zbl0760.32001MR1211412
 - Fornaess (J. E.).— Biholomorphic mappings between weakly pseudoconvex domains. Pacific J. Math., 74(1):63-65 (1978). Zbl0353.32026MR481111
 - MacCluer (B. D.).— Iterates of holomorphic self-maps of the unit ball in . Michigan Math. J., 30(1):97-106 (1983). Zbl0528.32019MR694933
 - Nagel (A.), Stein (E. M.), and Wainger (S.).— Balls and metrics defined by vector fields. I. Basic properties. Acta Math., 155(1-2):103-147 (1985). Zbl0578.32044MR793239
 - Opshtein (E.).— Sphericity and contractibility of strictly pseudoconvex hypersurfaces. Prepublication, arXiv math.CV/0504054 (2005).
 - Opshtein (E.).— Dynamique des applications holomorphes propres des domaines réguliers et problème de l’injectivité. Math. Ann., 133(1):1-30 (2006). Zbl1097.32008MR2217682
 - Ourimi (N.).— Some compactness theorems of families of proper holomorphic correspondences. Publ. Mat., 47(1):31-43 (2003). Zbl1044.32012MR1970893
 - Pinčuk (S. I.).— The analytic continuation of holomorphic mappings. Mat. Sb. (N.S.), 98(140)(3(11)):416-435, 495-496 (1975). Zbl0366.32010MR393562
 - Rosay (J.-P.).— Sur une caractérisation de la boule parmi les domaines de par son groupe d’automorphismes. Ann. Inst. Fourier (Grenoble), 29(4):ix, p. 91-97 (1979). Zbl0402.32001MR558590
 - Rudin (W.).— Function theory in the unit ball of , volume 241 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Science]. Springer-Verlag, New York (1980). Zbl0495.32001MR601594
 - Tumanov (A. E.) and Khenkin (G. M.).— Local characterization of holomorphic automorphisms of Siegel domains. Funktsional. Anal. i Prilozhen., 17(4):49-61 (1983). Zbl0572.32018MR725415
 - Webster (S. M.).— On the transformation group of a real hypersurface. Trans. Amer. Math. Soc., 231(1):179-190 (1977). Zbl0368.57013MR481085
 - Wong (B.).— Characterization of the unit ball in by its automorphism group. Invent. Math., 41(3):253-257 (1977). Zbl0385.32016MR492401
 
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.