A Wong-Rosay type theorem for proper holomorphic self-maps

Emmanuel Opshtein[1]

  • [1] Institut de Recherche Mathématique Avancée, UMR 7501, Université de Strasbourg et CNRS, 7 rue René Descartes, 67000 Strasbourg, France.

Annales de la faculté des sciences de Toulouse Mathématiques (2010)

  • Volume: 19, Issue: 3-4, page 513-524
  • ISSN: 0240-2963

Abstract

top
In this short paper, we show that the only proper holomorphic self-maps of bounded domains in k whose iterates approach a strictly pseudoconvex point of the boundary are automorphisms of the euclidean ball. This is a Wong-Rosay type theorem for a sequence of maps whose degrees are a priori unbounded.

How to cite

top

Opshtein, Emmanuel. "A Wong-Rosay type theorem for proper holomorphic self-maps." Annales de la faculté des sciences de Toulouse Mathématiques 19.3-4 (2010): 513-524. <http://eudml.org/doc/115854>.

@article{Opshtein2010,
abstract = {In this short paper, we show that the only proper holomorphic self-maps of bounded domains in $\mathbb\{C\}^k$ whose iterates approach a strictly pseudoconvex point of the boundary are automorphisms of the euclidean ball. This is a Wong-Rosay type theorem for a sequence of maps whose degrees are a priori unbounded.},
affiliation = {Institut de Recherche Mathématique Avancée, UMR 7501, Université de Strasbourg et CNRS, 7 rue René Descartes, 67000 Strasbourg, France.},
author = {Opshtein, Emmanuel},
journal = {Annales de la faculté des sciences de Toulouse Mathématiques},
keywords = {proper holomorphic mapping; automorphism group},
language = {eng},
number = {3-4},
pages = {513-524},
publisher = {Université Paul Sabatier, Toulouse},
title = {A Wong-Rosay type theorem for proper holomorphic self-maps},
url = {http://eudml.org/doc/115854},
volume = {19},
year = {2010},
}

TY - JOUR
AU - Opshtein, Emmanuel
TI - A Wong-Rosay type theorem for proper holomorphic self-maps
JO - Annales de la faculté des sciences de Toulouse Mathématiques
PY - 2010
PB - Université Paul Sabatier, Toulouse
VL - 19
IS - 3-4
SP - 513
EP - 524
AB - In this short paper, we show that the only proper holomorphic self-maps of bounded domains in $\mathbb{C}^k$ whose iterates approach a strictly pseudoconvex point of the boundary are automorphisms of the euclidean ball. This is a Wong-Rosay type theorem for a sequence of maps whose degrees are a priori unbounded.
LA - eng
KW - proper holomorphic mapping; automorphism group
UR - http://eudml.org/doc/115854
ER -

References

top
  1. Alexander (H.).— Holomorphic mappings from the ball and polydisc. Math. Ann., 209:249-256 (1974). Zbl0272.32006MR352531
  2. Bell (S.).— Local boundary behavior of proper holomorphic mappings. In Complex analysis of several variables (Madison, Wis., 1982), volume 41 of Proc. Sympos. Pure Math., p. 1-7. Amer. Math. Soc., Providence, RI (1984). Zbl0537.32005MR740867
  3. Berteloot (F.).— Attraction des disques analytiques et continuité höldérienne d’applications holomorphes propres. In Topics in complex analysis (Warsaw, 1992), volume 31 of Banach Center Publ., p. 91-98. Polish Acad. Sci., Warsaw (1995). Zbl0831.32012MR1341379
  4. Boggess (A.).— CR manifolds and the tangential Cauchy-Riemann complex. Studies in Advanced Mathematics. CRC Press, Boca Raton, FL (1991). Zbl0760.32001MR1211412
  5. Fornaess (J. E.).— Biholomorphic mappings between weakly pseudoconvex domains. Pacific J. Math., 74(1):63-65 (1978). Zbl0353.32026MR481111
  6. MacCluer (B. D.).— Iterates of holomorphic self-maps of the unit ball in C N . Michigan Math. J., 30(1):97-106 (1983). Zbl0528.32019MR694933
  7. Nagel (A.), Stein (E. M.), and Wainger (S.).— Balls and metrics defined by vector fields. I. Basic properties. Acta Math., 155(1-2):103-147 (1985). Zbl0578.32044MR793239
  8. Opshtein (E.).— Sphericity and contractibility of strictly pseudoconvex hypersurfaces. Prepublication, arXiv math.CV/0504054 (2005). 
  9. Opshtein (E.).— Dynamique des applications holomorphes propres des domaines réguliers et problème de l’injectivité. Math. Ann., 133(1):1-30 (2006). Zbl1097.32008MR2217682
  10. Ourimi (N.).— Some compactness theorems of families of proper holomorphic correspondences. Publ. Mat., 47(1):31-43 (2003). Zbl1044.32012MR1970893
  11. Pinčuk (S. I.).— The analytic continuation of holomorphic mappings. Mat. Sb. (N.S.), 98(140)(3(11)):416-435, 495-496 (1975). Zbl0366.32010MR393562
  12. Rosay (J.-P.).— Sur une caractérisation de la boule parmi les domaines de C n par son groupe d’automorphismes. Ann. Inst. Fourier (Grenoble), 29(4):ix, p. 91-97 (1979). Zbl0402.32001MR558590
  13. Rudin (W.).— Function theory in the unit ball of C n , volume 241 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Science]. Springer-Verlag, New York (1980). Zbl0495.32001MR601594
  14. Tumanov (A. E.) and Khenkin (G. M.).— Local characterization of holomorphic automorphisms of Siegel domains. Funktsional. Anal. i Prilozhen., 17(4):49-61 (1983). Zbl0572.32018MR725415
  15. Webster (S. M.).— On the transformation group of a real hypersurface. Trans. Amer. Math. Soc., 231(1):179-190 (1977). Zbl0368.57013MR481085
  16. Wong (B.).— Characterization of the unit ball in C n by its automorphism group. Invent. Math., 41(3):253-257 (1977). Zbl0385.32016MR492401

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.