Krull-Tropical Hypersurfaces

Fuensanta Aroca[1]

  • [1] Instituto de Matemáticas (Unidad Cuernavaca) Universidad Nacional Autónoma de México. A.P. 273, Admon. de correos #3 C.P. 62251 Cuernavaca, Morelos

Annales de la faculté des sciences de Toulouse Mathématiques (2010)

  • Volume: 19, Issue: 3-4, page 525-538
  • ISSN: 0240-2963

Abstract

top
The concepts of tropical semiring and tropical hypersurface, are extended to the case of an arbitrary ordered group. Then, we define the tropicalization of a polynomial with coefficients in a Krull-valued field. After a close study of the properties of the operator “tropicalization" we conclude with an extension of Kapranov’s theorem to algebraically closed fields together with a valuation over an ordered group.

How to cite

top

Aroca, Fuensanta. "Krull-Tropical Hypersurfaces." Annales de la faculté des sciences de Toulouse Mathématiques 19.3-4 (2010): 525-538. <http://eudml.org/doc/115858>.

@article{Aroca2010,
abstract = {The concepts of tropical semiring and tropical hypersurface, are extended to the case of an arbitrary ordered group. Then, we define the tropicalization of a polynomial with coefficients in a Krull-valued field. After a close study of the properties of the operator “tropicalization" we conclude with an extension of Kapranov’s theorem to algebraically closed fields together with a valuation over an ordered group.},
affiliation = {Instituto de Matemáticas (Unidad Cuernavaca) Universidad Nacional Autónoma de México. A.P. 273, Admon. de correos #3 C.P. 62251 Cuernavaca, Morelos},
author = {Aroca, Fuensanta},
journal = {Annales de la faculté des sciences de Toulouse Mathématiques},
keywords = {tropical hypersurfaces; Kapranov's theorem; valuations},
language = {eng},
number = {3-4},
pages = {525-538},
publisher = {Université Paul Sabatier, Toulouse},
title = {Krull-Tropical Hypersurfaces},
url = {http://eudml.org/doc/115858},
volume = {19},
year = {2010},
}

TY - JOUR
AU - Aroca, Fuensanta
TI - Krull-Tropical Hypersurfaces
JO - Annales de la faculté des sciences de Toulouse Mathématiques
PY - 2010
PB - Université Paul Sabatier, Toulouse
VL - 19
IS - 3-4
SP - 525
EP - 538
AB - The concepts of tropical semiring and tropical hypersurface, are extended to the case of an arbitrary ordered group. Then, we define the tropicalization of a polynomial with coefficients in a Krull-valued field. After a close study of the properties of the operator “tropicalization" we conclude with an extension of Kapranov’s theorem to algebraically closed fields together with a valuation over an ordered group.
LA - eng
KW - tropical hypersurfaces; Kapranov's theorem; valuations
UR - http://eudml.org/doc/115858
ER -

References

top
  1. Aroca (F.).— Tropical geometry for fields with a krull valuation: First defiintions and a small result. Boletin de la SMM, 3a Serie Volumen 16 Numero 1 (2010). Zbl1292.14041
  2. Einsiedler (M.), Kapranov (M.), and Lind (D.).— Non-Archimedean amoebas and tropical varieties. J. Reine Angew. Math., 601:139-157 (2006). arXiv:math.AG/0408311v2. Zbl1115.14051MR2289207
  3. Eisenbud (D.).— Commutative algebra, volume 150 of Graduate Texts in Mathematics. Springer-Verlag, New York, (1995). With a view toward algebraic geometry. Zbl0819.13001MR1322960
  4. Gathmann (A.).— Tropical algebraic geometry. Jahresber. Deutsch. Math.-Verein., 108(1):3-32 (2006). arXiv:math.AG/0601322v1". Zbl1109.14038MR2219706
  5. Itenberg (I.), Mikhalkin (G.), and Shustin (E.).— Tropical algebraic geometry, volume 35 of Oberwolfach Seminars. Birkhäuser Verlag, Basel (2007). Zbl1162.14300MR2292729
  6. Katz (E.).— A tropical toolkit. Expositiones Mathematicae, 27(1):1-36 (2009). arXiv:math/0610878. Zbl1193.14004MR2503041
  7. Krull (W.).— Allgemeine bewertungstheorie. J. Reine Angew. Math., 167:160-197 (1932). Zbl0004.09802
  8. Ribenboim (P.).— The theory of classical valuations. Springer Monographs in Mathematics. Springer-Verlag, New York (1999). Zbl0957.12005MR1677964
  9. Richter-Gebert (J.), Sturmfels (B.), and Theobald (T.).— First steps in tropical geometry. In Idempotent mathematics and mathematical physics, volume 377 of Contemp. Math., pages 289-317. Amer. Math. Soc., Providence, RI, (2005). arXiv:math.AG/0306366. Zbl1093.14080MR2149011
  10. Shafarevich (I. R.).— Basic algebraic geometry. 1. Springer-Verlag, Berlin, second edition, (1994). Varieties in projective space, Translated from the 1988 Russian edition and with notes by Miles Reid. Zbl0362.14001MR1328833
  11. Spivakovsky (M.).— Valuations in function fields of surfaces. Amer. J. Math., 112(1):107-156 (1990). Zbl0716.13003MR1037606
  12. Zariski (O.) and Samuel (P.).— Commutative algebra. Vol. II. Springer-Verlag, New York, (1975). Reprint of the 1960 edition, Graduate Texts in Mathematics, Vol. 29. Zbl0313.13001MR389876

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.