Krull-Tropical Hypersurfaces
- [1] Instituto de Matemáticas (Unidad Cuernavaca) Universidad Nacional Autónoma de México. A.P. 273, Admon. de correos #3 C.P. 62251 Cuernavaca, Morelos
Annales de la faculté des sciences de Toulouse Mathématiques (2010)
- Volume: 19, Issue: 3-4, page 525-538
- ISSN: 0240-2963
Access Full Article
topAbstract
topHow to cite
topAroca, Fuensanta. "Krull-Tropical Hypersurfaces." Annales de la faculté des sciences de Toulouse Mathématiques 19.3-4 (2010): 525-538. <http://eudml.org/doc/115858>.
@article{Aroca2010,
abstract = {The concepts of tropical semiring and tropical hypersurface, are extended to the case of an arbitrary ordered group. Then, we define the tropicalization of a polynomial with coefficients in a Krull-valued field. After a close study of the properties of the operator “tropicalization" we conclude with an extension of Kapranov’s theorem to algebraically closed fields together with a valuation over an ordered group.},
affiliation = {Instituto de Matemáticas (Unidad Cuernavaca) Universidad Nacional Autónoma de México. A.P. 273, Admon. de correos #3 C.P. 62251 Cuernavaca, Morelos},
author = {Aroca, Fuensanta},
journal = {Annales de la faculté des sciences de Toulouse Mathématiques},
keywords = {tropical hypersurfaces; Kapranov's theorem; valuations},
language = {eng},
number = {3-4},
pages = {525-538},
publisher = {Université Paul Sabatier, Toulouse},
title = {Krull-Tropical Hypersurfaces},
url = {http://eudml.org/doc/115858},
volume = {19},
year = {2010},
}
TY - JOUR
AU - Aroca, Fuensanta
TI - Krull-Tropical Hypersurfaces
JO - Annales de la faculté des sciences de Toulouse Mathématiques
PY - 2010
PB - Université Paul Sabatier, Toulouse
VL - 19
IS - 3-4
SP - 525
EP - 538
AB - The concepts of tropical semiring and tropical hypersurface, are extended to the case of an arbitrary ordered group. Then, we define the tropicalization of a polynomial with coefficients in a Krull-valued field. After a close study of the properties of the operator “tropicalization" we conclude with an extension of Kapranov’s theorem to algebraically closed fields together with a valuation over an ordered group.
LA - eng
KW - tropical hypersurfaces; Kapranov's theorem; valuations
UR - http://eudml.org/doc/115858
ER -
References
top- Aroca (F.).— Tropical geometry for fields with a krull valuation: First defiintions and a small result. Boletin de la SMM, 3a Serie Volumen 16 Numero 1 (2010). Zbl1292.14041
- Einsiedler (M.), Kapranov (M.), and Lind (D.).— Non-Archimedean amoebas and tropical varieties. J. Reine Angew. Math., 601:139-157 (2006). arXiv:math.AG/0408311v2. Zbl1115.14051MR2289207
- Eisenbud (D.).— Commutative algebra, volume 150 of Graduate Texts in Mathematics. Springer-Verlag, New York, (1995). With a view toward algebraic geometry. Zbl0819.13001MR1322960
- Gathmann (A.).— Tropical algebraic geometry. Jahresber. Deutsch. Math.-Verein., 108(1):3-32 (2006). arXiv:math.AG/0601322v1". Zbl1109.14038MR2219706
- Itenberg (I.), Mikhalkin (G.), and Shustin (E.).— Tropical algebraic geometry, volume 35 of Oberwolfach Seminars. Birkhäuser Verlag, Basel (2007). Zbl1162.14300MR2292729
- Katz (E.).— A tropical toolkit. Expositiones Mathematicae, 27(1):1-36 (2009). arXiv:math/0610878. Zbl1193.14004MR2503041
- Krull (W.).— Allgemeine bewertungstheorie. J. Reine Angew. Math., 167:160-197 (1932). Zbl0004.09802
- Ribenboim (P.).— The theory of classical valuations. Springer Monographs in Mathematics. Springer-Verlag, New York (1999). Zbl0957.12005MR1677964
- Richter-Gebert (J.), Sturmfels (B.), and Theobald (T.).— First steps in tropical geometry. In Idempotent mathematics and mathematical physics, volume 377 of Contemp. Math., pages 289-317. Amer. Math. Soc., Providence, RI, (2005). arXiv:math.AG/0306366. Zbl1093.14080MR2149011
- Shafarevich (I. R.).— Basic algebraic geometry. 1. Springer-Verlag, Berlin, second edition, (1994). Varieties in projective space, Translated from the 1988 Russian edition and with notes by Miles Reid. Zbl0362.14001MR1328833
- Spivakovsky (M.).— Valuations in function fields of surfaces. Amer. J. Math., 112(1):107-156 (1990). Zbl0716.13003MR1037606
- Zariski (O.) and Samuel (P.).— Commutative algebra. Vol. II. Springer-Verlag, New York, (1975). Reprint of the 1960 edition, Graduate Texts in Mathematics, Vol. 29. Zbl0313.13001MR389876
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.