Page 1 Next

Displaying 1 – 20 of 24

Showing per page

A metric graph satisfying [...] w 4 1 = 1 w 4 1 = 1 that cannot be lifted to a curve satisfying [...] dim ⁡   ( W 4 1 ) = 1 dim ( W 4 1 ) = 1

Marc Coppens (2016)

Open Mathematics

For all integers g ≥ 6 we prove the existence of a metric graph G with [...] w41=1 w 4 1 = 1 such that G has Clifford index 2 and there is no tropical modification G′ of G such that there exists a finite harmonic morphism of degree 2 from G′ to a metric graph of genus 1. Those examples show that not all dimension theorems on the space classifying special linear systems for curves have immediate translation to the theory of divisors on metric graphs.

A tropical view on Bruhat-Tits buildings and their compactifications

Annette Werner (2011)

Open Mathematics

We relate some features of Bruhat-Tits buildings and their compactifications to tropical geometry. If G is a semisimple group over a suitable non-Archimedean field, the stabilizers of points in the Bruhat-Tits building of G and in some of its compactifications are described by tropical linear algebra. The compactifications we consider arise from algebraic representations of G. We show that the fan which is used to compactify an apartment in this theory is given by the weight polytope of the representation...

Algèbres de polynômes tropicaux

Dominique Castella (2013)

Annales mathématiques Blaise Pascal

Nous continuons dans ce second article, l’étude des outils algébrique de l’algèbre de la caractéristique 1 : nous examinons plus spécialement ici les algèbres de polynômes sur un semi-corps idempotent. Ce travail est motivé par le développement de la géométrie tropicale qui apparaît comme étant la géométrie algébrique de l’algèbre tropicale. En fait l’objet algébrique le plus intéressant est l’image de l’algèbre de polynôme dans son semi-corps des fractions. Nous pouvons ainsi retrouver sur les...

An idempotent algorithm for a class of network-disruption games

William M. McEneaney, Amit Pandey (2016)

Kybernetika

A game is considered where the communication network of the first player is explicitly modelled. The second player may induce delays in this network, while the first player may counteract such actions. Costs are modelled through expectations over idempotent probability measures. The idempotent probabilities are conditioned by observational data, the arrival of which may have been delayed along the communication network. This induces a game where the state space consists of the network delays. Even...

Cluster ensembles, quantization and the dilogarithm

Vladimir V. Fock, Alexander B. Goncharov (2009)

Annales scientifiques de l'École Normale Supérieure

A cluster ensemble is a pair ( 𝒳 , 𝒜 ) of positive spaces (i.e. varieties equipped with positive atlases), coming with an action of a symmetry group Γ . The space 𝒜 is closely related to the spectrum of a cluster algebra [12]. The two spaces are related by a morphism p : 𝒜 𝒳 . The space 𝒜 is equipped with a closed 2 -form, possibly degenerate, and the space 𝒳 has a Poisson structure. The map p is compatible with these structures. The dilogarithm together with its motivic and quantum avatars plays a central role...

Distances on the tropical line determined by two points

María Jesús de la Puente (2014)

Kybernetika

Let p ' and q ' be points in n . Write p ' q ' if p ' - q ' is a multiple of ( 1 , ... , 1 ) . Two different points p and q in n / uniquely determine a tropical line L ( p , q ) passing through them and stable under small perturbations. This line is a balanced unrooted semi-labeled tree on n leaves. It is also a metric graph. If some representatives p ' and q ' of p and q are the first and second columns of some real normal idempotent order n matrix A , we prove that the tree L ( p , q ) is described by a matrix F , easily obtained from A . We also prove that...

Enumeration of real conics and maximal configurations

Erwan Brugallé, Nicolas Puignau (2013)

Journal of the European Mathematical Society

We use floor decompositions of tropical curves to prove that any enumerative problem concerning conics passing through projective-linear subspaces in P n is maximal. That is, there exist generic configurations of real linear spaces such that all complex conics passing through these constraints are actually real.

Higher order duality and toric embeddings

Alicia Dickenstein, Sandra Di Rocco, Ragni Piene (2014)

Annales de l’institut Fourier

The notion of higher order dual varieties of a projective variety, introduced by Piene in 1983, is a natural generalization of the classical notion of projective duality. In this paper we study higher order dual varieties of projective toric embeddings. We express the degree of the second dual variety of a 2-jet spanned embedding of a smooth toric threefold in geometric and combinatorial terms, and we classify those whose second dual variety has dimension less than expected. We also describe the...

How to draw tropical planes.

Herrmann, Sven, Jensen, Anders, Joswig, Michael, Sturmfels, Bernd (2009)

The Electronic Journal of Combinatorics [electronic only]

Idempotent semigroups and tropical algebraic sets

Zur Izhakian, Eugenii Shustin (2012)

Journal of the European Mathematical Society

The tropical semifield, i.e., the real numbers enhanced by the operations of addition and maximum, serves as a base of tropical mathematics. Addition is an abelian group operation, whereas the maximum defines an idempotent semigroup structure. We address the question of the geometry of idempotent semigroups, in particular, tropical algebraic sets carrying the structure of a commutative idempotent semigroup. We show that commutative idempotent semigroups are contractible, that systems of tropical...

Krull-Tropical Hypersurfaces

Fuensanta Aroca (2010)

Annales de la faculté des sciences de Toulouse Mathématiques

The concepts of tropical semiring and tropical hypersurface, are extended to the case of an arbitrary ordered group. Then, we define the tropicalization of a polynomial with coefficients in a Krull-valued field. After a close study of the properties of the operator “tropicalization" we conclude with an extension of Kapranov’s theorem to algebraically closed fields together with a valuation over an ordered group.

Labeled floor diagrams for plane curves

Sergey Fomin, Grigory Mikhalkin (2010)

Journal of the European Mathematical Society

Floor diagrams are a class of weighted oriented graphs introduced by E. Brugallé and the second author. Tropical geometry arguments lead to combinatorial descriptions of (ordinary and relative) Gromov–Witten invariants of projective spaces in terms of floor diagrams and their generalizations. In a number of cases, these descriptions can be used to obtain explicit (direct or recursive) formulas for the corresponding enumerative invariants. In particular, we use this approach to enumerate rational...

On hyperplanes and semispaces in max–min convex geometry

Viorel Nitica, Sergeĭ Sergeev (2010)

Kybernetika

The concept of separation by hyperplanes and halfspaces is fundamental for convex geometry and its tropical (max-plus) analogue. However, analogous separation results in max-min convex geometry are based on semispaces. This paper answers the question which semispaces are hyperplanes and when it is possible to “classically” separate by hyperplanes in max-min convex geometry.

On Zariski's theorem in positive characteristic

Ilya Tyomkin (2013)

Journal of the European Mathematical Society

In the current paper we show that the dimension of a family V of irreducible reduced curves in a given ample linear system on a toric surface S over an algebraically closed field is bounded from above by - K S . C + p g ( C ) - 1 , where C denotes a general curve in the family. This result generalizes a famous theorem of Zariski to the case of positive characteristic. We also explore new phenomena that occur in positive characteristic: We show that the equality 𝚍𝚒𝚖 ( V ) = - K S . C + p g ( C ) - 1 does not imply the nodality of C even if C belongs to the...

Currently displaying 1 – 20 of 24

Page 1 Next