Prym Subvarieties P λ of Jacobians via Schur correspondences between curves

Yashonidhi Pandey[1]

  • [1] Chennai Mathematical Institute, Plot No H1, Sipcot IT Park, Padur Post Office, Siruseri 603103, India

Annales de la faculté des sciences de Toulouse Mathématiques (2010)

  • Volume: 19, Issue: 3-4, page 603-633
  • ISSN: 0240-2963

Abstract

top
Let π : Z X denote a Galois cover of smooth projective curves with Galois group W a Weyl group of a simple Lie group G . For a dominant weight λ , we consider the intermediate curve Y λ = Z / Stab ( λ ) . One defines a Prym variety P λ Jac ( Y λ ) and we denote by ϕ λ the restriction of the principal polarization of Jac ( Y λ ) upon P λ . For two dominant weights λ and μ , we construct a correspondence S λ μ on Y λ × Y μ and calculate the pull-back of ϕ μ by S λ μ in terms of ϕ λ .

How to cite

top

Pandey, Yashonidhi. "Prym Subvarieties $P_\lambda $ of Jacobians via Schur correspondences between curves." Annales de la faculté des sciences de Toulouse Mathématiques 19.3-4 (2010): 603-633. <http://eudml.org/doc/115868>.

@article{Pandey2010,
abstract = {Let $\pi : Z \rightarrow X$ denote a Galois cover of smooth projective curves with Galois group $W$ a Weyl group of a simple Lie group $G$. For a dominant weight $\lambda $, we consider the intermediate curve $Y_\lambda = Z/\{\rm Stab\}(\lambda )$. One defines a Prym variety $P_\lambda \subset \{\rm Jac\}(Y_\lambda )$ and we denote by $\varphi _\lambda $ the restriction of the principal polarization of $\{\rm Jac\}(Y_\lambda )$ upon $P_\lambda $. For two dominant weights $\lambda $ and $\mu $, we construct a correspondence $S_\{\lambda \mu \}$ on $Y_\lambda \times Y_\mu $ and calculate the pull-back of $\varphi _\mu $ by $S_\{\lambda \mu \}$ in terms of $\varphi _\lambda $.},
affiliation = {Chennai Mathematical Institute, Plot No H1, Sipcot IT Park, Padur Post Office, Siruseri 603103, India},
author = {Pandey, Yashonidhi},
journal = {Annales de la faculté des sciences de Toulouse Mathématiques},
keywords = {Prym variety; Galois cover},
language = {eng},
number = {3-4},
pages = {603-633},
publisher = {Université Paul Sabatier, Toulouse},
title = {Prym Subvarieties $P_\lambda $ of Jacobians via Schur correspondences between curves},
url = {http://eudml.org/doc/115868},
volume = {19},
year = {2010},
}

TY - JOUR
AU - Pandey, Yashonidhi
TI - Prym Subvarieties $P_\lambda $ of Jacobians via Schur correspondences between curves
JO - Annales de la faculté des sciences de Toulouse Mathématiques
PY - 2010
PB - Université Paul Sabatier, Toulouse
VL - 19
IS - 3-4
SP - 603
EP - 633
AB - Let $\pi : Z \rightarrow X$ denote a Galois cover of smooth projective curves with Galois group $W$ a Weyl group of a simple Lie group $G$. For a dominant weight $\lambda $, we consider the intermediate curve $Y_\lambda = Z/{\rm Stab}(\lambda )$. One defines a Prym variety $P_\lambda \subset {\rm Jac}(Y_\lambda )$ and we denote by $\varphi _\lambda $ the restriction of the principal polarization of ${\rm Jac}(Y_\lambda )$ upon $P_\lambda $. For two dominant weights $\lambda $ and $\mu $, we construct a correspondence $S_{\lambda \mu }$ on $Y_\lambda \times Y_\mu $ and calculate the pull-back of $\varphi _\mu $ by $S_{\lambda \mu }$ in terms of $\varphi _\lambda $.
LA - eng
KW - Prym variety; Galois cover
UR - http://eudml.org/doc/115868
ER -

References

top
  1. Beauville (A.) and Narasimhan (M. S.) and Ramanan (S.).— Spectral curves and the generalised theta divisor, Journal für die Reine und Angewandte Mathematik, Volume 398, p. 169-179 (1989). Zbl0666.14015MR998478
  2. Birkenhake (C.) and Lange (H.).— Complex abelian varieties, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], Volume 302, Second edition, Springer-Verlag, Berlin (2004). Zbl1056.14063MR2062673
  3. Donagi (R.).— Decomposition of spectral covers, Journées de Géométrie Algébrique d’Orsay (Orsay, 1992), Astérisque, 218, p. 145-175 (1993). Zbl0820.14031MR1265312
  4. Kanev (V.).— Spectral curves, simple Lie algebras, and Prym-Tjurin varieties, Theta functions–Bowdoin 1987, Part 1 (Brunswick, ME, 1987), Proc. Sympos. Pure Math., Volume 49, p. 627-645, Amer. Math. Soc. Zbl0707.14041MR1013158
  5. Kanev (V.).— Spectral curves and Prym-Tjurin varieties. I, Abelian varieties (Egloffstein, 1993), p. 151-198, de Gruyter, Berlin (1995). Zbl0856.14010MR1336606
  6. Lange (H.) and Kanev (V.).— Polarization type of isogenous Prym-Tyurin Varieties; Preprint (2007), Contemp. Math., Volume 465, p. 147-174, Amer. Math. Soc. (2008). Zbl1152.14302MR2457737
  7. Lange (H.) and Pauly (C.).— Polarizations of Prym varieties for Weyl groups via Abelianization, Journal of the European Mathematical Society, Volume 11, No. 2, p. 315-349 (2009). Zbl1165.14026MR2486936
  8. Lange (H.) and Recillas (S.).— Polarizations of Prym varieties of pairs of coverings, Archiv der Mathematik, Volume 86, 2, p. 111-120 (2006). Zbl1093.14063MR2205225
  9. Mérindol (J.-Y.).— Variétés de Prym d’un revêtement galoisien, Journal für die Reine und Angewandte Mathematik, Volume 461, p. 49-61 (1995). Zbl0814.14043MR1324208
  10. Mumford (D.).— Abelian varieties, Tata Institute of Fundamental Research Studies in Mathematics, No. 5, Published for the Tata Institute of Fundamental Research, Bombay (1970). Zbl0223.14022MR282985
  11. Mumford (D.).— Prym varieties. I, Contributions to analysis (a collection of papers dedicated to Lipman Bers), p. 325-350, Academic Press, New York (1974). Zbl0299.14018MR379510
  12. Springer (T. A.).— A construction of representations of Weyl groups, Inventiones Mathematicae, Volume 44, Number 3, p. 279-293 (1978). Zbl0376.17002MR491988

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.