Prym Subvarieties of Jacobians via Schur correspondences between curves
- [1] Chennai Mathematical Institute, Plot No H1, Sipcot IT Park, Padur Post Office, Siruseri 603103, India
Annales de la faculté des sciences de Toulouse Mathématiques (2010)
- Volume: 19, Issue: 3-4, page 603-633
- ISSN: 0240-2963
Access Full Article
topAbstract
topHow to cite
topPandey, Yashonidhi. "Prym Subvarieties $P_\lambda $ of Jacobians via Schur correspondences between curves." Annales de la faculté des sciences de Toulouse Mathématiques 19.3-4 (2010): 603-633. <http://eudml.org/doc/115868>.
@article{Pandey2010,
abstract = {Let $\pi : Z \rightarrow X$ denote a Galois cover of smooth projective curves with Galois group $W$ a Weyl group of a simple Lie group $G$. For a dominant weight $\lambda $, we consider the intermediate curve $Y_\lambda = Z/\{\rm Stab\}(\lambda )$. One defines a Prym variety $P_\lambda \subset \{\rm Jac\}(Y_\lambda )$ and we denote by $\varphi _\lambda $ the restriction of the principal polarization of $\{\rm Jac\}(Y_\lambda )$ upon $P_\lambda $. For two dominant weights $\lambda $ and $\mu $, we construct a correspondence $S_\{\lambda \mu \}$ on $Y_\lambda \times Y_\mu $ and calculate the pull-back of $\varphi _\mu $ by $S_\{\lambda \mu \}$ in terms of $\varphi _\lambda $.},
affiliation = {Chennai Mathematical Institute, Plot No H1, Sipcot IT Park, Padur Post Office, Siruseri 603103, India},
author = {Pandey, Yashonidhi},
journal = {Annales de la faculté des sciences de Toulouse Mathématiques},
keywords = {Prym variety; Galois cover},
language = {eng},
number = {3-4},
pages = {603-633},
publisher = {Université Paul Sabatier, Toulouse},
title = {Prym Subvarieties $P_\lambda $ of Jacobians via Schur correspondences between curves},
url = {http://eudml.org/doc/115868},
volume = {19},
year = {2010},
}
TY - JOUR
AU - Pandey, Yashonidhi
TI - Prym Subvarieties $P_\lambda $ of Jacobians via Schur correspondences between curves
JO - Annales de la faculté des sciences de Toulouse Mathématiques
PY - 2010
PB - Université Paul Sabatier, Toulouse
VL - 19
IS - 3-4
SP - 603
EP - 633
AB - Let $\pi : Z \rightarrow X$ denote a Galois cover of smooth projective curves with Galois group $W$ a Weyl group of a simple Lie group $G$. For a dominant weight $\lambda $, we consider the intermediate curve $Y_\lambda = Z/{\rm Stab}(\lambda )$. One defines a Prym variety $P_\lambda \subset {\rm Jac}(Y_\lambda )$ and we denote by $\varphi _\lambda $ the restriction of the principal polarization of ${\rm Jac}(Y_\lambda )$ upon $P_\lambda $. For two dominant weights $\lambda $ and $\mu $, we construct a correspondence $S_{\lambda \mu }$ on $Y_\lambda \times Y_\mu $ and calculate the pull-back of $\varphi _\mu $ by $S_{\lambda \mu }$ in terms of $\varphi _\lambda $.
LA - eng
KW - Prym variety; Galois cover
UR - http://eudml.org/doc/115868
ER -
References
top- Beauville (A.) and Narasimhan (M. S.) and Ramanan (S.).— Spectral curves and the generalised theta divisor, Journal für die Reine und Angewandte Mathematik, Volume 398, p. 169-179 (1989). Zbl0666.14015MR998478
- Birkenhake (C.) and Lange (H.).— Complex abelian varieties, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], Volume 302, Second edition, Springer-Verlag, Berlin (2004). Zbl1056.14063MR2062673
- Donagi (R.).— Decomposition of spectral covers, Journées de Géométrie Algébrique d’Orsay (Orsay, 1992), Astérisque, 218, p. 145-175 (1993). Zbl0820.14031MR1265312
- Kanev (V.).— Spectral curves, simple Lie algebras, and Prym-Tjurin varieties, Theta functions–Bowdoin 1987, Part 1 (Brunswick, ME, 1987), Proc. Sympos. Pure Math., Volume 49, p. 627-645, Amer. Math. Soc. Zbl0707.14041MR1013158
- Kanev (V.).— Spectral curves and Prym-Tjurin varieties. I, Abelian varieties (Egloffstein, 1993), p. 151-198, de Gruyter, Berlin (1995). Zbl0856.14010MR1336606
- Lange (H.) and Kanev (V.).— Polarization type of isogenous Prym-Tyurin Varieties; Preprint (2007), Contemp. Math., Volume 465, p. 147-174, Amer. Math. Soc. (2008). Zbl1152.14302MR2457737
- Lange (H.) and Pauly (C.).— Polarizations of Prym varieties for Weyl groups via Abelianization, Journal of the European Mathematical Society, Volume 11, No. 2, p. 315-349 (2009). Zbl1165.14026MR2486936
- Lange (H.) and Recillas (S.).— Polarizations of Prym varieties of pairs of coverings, Archiv der Mathematik, Volume 86, 2, p. 111-120 (2006). Zbl1093.14063MR2205225
- Mérindol (J.-Y.).— Variétés de Prym d’un revêtement galoisien, Journal für die Reine und Angewandte Mathematik, Volume 461, p. 49-61 (1995). Zbl0814.14043MR1324208
- Mumford (D.).— Abelian varieties, Tata Institute of Fundamental Research Studies in Mathematics, No. 5, Published for the Tata Institute of Fundamental Research, Bombay (1970). Zbl0223.14022MR282985
- Mumford (D.).— Prym varieties. I, Contributions to analysis (a collection of papers dedicated to Lipman Bers), p. 325-350, Academic Press, New York (1974). Zbl0299.14018MR379510
- Springer (T. A.).— A construction of representations of Weyl groups, Inventiones Mathematicae, Volume 44, Number 3, p. 279-293 (1978). Zbl0376.17002MR491988
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.