On the stability by convolution product of a resurgent algebra

Yafei Ou[1]

  • [1] UNAM Université d’Angers, UMR CNRS 6093, 2 Boulevard Lavoisier, 49045 Angers Cedex 01, France

Annales de la faculté des sciences de Toulouse Mathématiques (2010)

  • Volume: 19, Issue: 3-4, page 687-705
  • ISSN: 0240-2963

Abstract

top
We consider the space of holomorphic functions at the origin which extend analytically on the universal covering of ω , ω . We show that this space is stable by convolution product, thus is a resurgent algebra.

How to cite

top

Ou, Yafei. "On the stability by convolution product of a resurgent algebra." Annales de la faculté des sciences de Toulouse Mathématiques 19.3-4 (2010): 687-705. <http://eudml.org/doc/115876>.

@article{Ou2010,
abstract = {We consider the space of holomorphic functions at the origin which extend analytically on the universal covering of $\{\mathbb\{C\}\}\setminus \{\omega \{\mathbb\{Z\}\}\}$, $ \omega \in \{\mathbb\{C\}\}^\star $. We show that this space is stable by convolution product, thus is a resurgent algebra.},
affiliation = {UNAM Université d’Angers, UMR CNRS 6093, 2 Boulevard Lavoisier, 49045 Angers Cedex 01, France},
author = {Ou, Yafei},
journal = {Annales de la faculté des sciences de Toulouse Mathématiques},
keywords = {universal covering of ; convolution},
language = {eng},
number = {3-4},
pages = {687-705},
publisher = {Université Paul Sabatier, Toulouse},
title = {On the stability by convolution product of a resurgent algebra},
url = {http://eudml.org/doc/115876},
volume = {19},
year = {2010},
}

TY - JOUR
AU - Ou, Yafei
TI - On the stability by convolution product of a resurgent algebra
JO - Annales de la faculté des sciences de Toulouse Mathématiques
PY - 2010
PB - Université Paul Sabatier, Toulouse
VL - 19
IS - 3-4
SP - 687
EP - 705
AB - We consider the space of holomorphic functions at the origin which extend analytically on the universal covering of ${\mathbb{C}}\setminus {\omega {\mathbb{Z}}}$, $ \omega \in {\mathbb{C}}^\star $. We show that this space is stable by convolution product, thus is a resurgent algebra.
LA - eng
KW - universal covering of ; convolution
UR - http://eudml.org/doc/115876
ER -

References

top
  1. Ecalle (J.).— Les algèbres de fonctions résurgentes. Publ. Math. D’Orsay, Université Paris- Sud, 1981.05 (1981). Zbl0499.30034
  2. Ecalle (J.).— Les fonctions résurgentes appliquées à l’itération. Publ. Math. D’Orsay, Université Paris-Sud, 1981.06 (1981). Zbl0499.30035
  3. Ecalle (J.).— Twisted resurgence monomials and canonical-spherical synthesis of local objects. analyzable functions and applications. Contemp. Math. 373, Amer. Math. Soc., Providence, RI, (2005) 207-315. Zbl1077.32001MR2130832
  4. Tougeron (J.C).— An introduction to the theory of Gevrey expansions and to the Borel-Laplace transform with some applications. Preprint University of Toronto, Canada (1990). 
  5. Gelfreich (V.), Sauzin (D.).— Borel summation and splitting of separatrices for the hénon map. Ann. Inst. Fourier (Grenoble) 51 (2001) no 2, 513-567. Zbl0988.37031MR1824963
  6. Candelpergher (B.), Nosmas (C.), Pham (F.).— Approche de la résurgence. Actualités mathématiques, Hermann, Paris (1993). MR1250603
  7. Ecalle (J.).— L’équation du pont et la classification analytique des objets locaux. Publ. Math. D’Orsay, Université Paris-Sud, 1985.05 (1985). Zbl0602.30029MR852210
  8. Ecalle (J.).— Weighted products and parametric resurgence, Analyse algébrique des perturbations singulières. I (Marseille-Luminy, 1991), xiii, xv, 7-49, Travaux en Cours,47, Hermann, Paris (1994). Zbl0834.34067MR1296470
  9. Ebeling (W.).— Functions of several complex variables and their singularities. Graduate studies in mathematics, Vol. 83. Amer. Math. Soc., Providence, RI (2007) [10] Sauzin, D.: Resurgent functions and splitting problems. RIMS Kokyuroku 1493, p. 48-117 (2005). Zbl1188.32001MR2319634
  10. Sauzin (D.).— Resurgent functions and splitting problems. RIMS Kokyuroku 1493, p. 48-117 (2005). 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.