Borel summation and splitting of separatrices for the Hénon map

Vassili Gelfreich[1]; David Sauzin[2]

  • [1] The Steklov Mathematical Institute at St. Petersburg, St. Petersburg (Russie)
  • [2] Institut de Mécanique Céleste, Astronomie et systèmes Dynamiques, 77 avenue Denfert-Rochereau, 75014 Paris (France)

Annales de l’institut Fourier (2001)

  • Volume: 51, Issue: 2, page 513-567
  • ISSN: 0373-0956

Abstract

top
We study two complex invariant manifolds associated with the parabolic fixed point of the area-preserving Hénon map. A single formal power series corresponds to both of them. The Borel transform of the formal series defines an analytic germ. We explore the Riemann surface and singularities of its analytic continuation. In particular we give a complete description of the “first” singularity and prove that a constant, which describes the splitting of the invariant manifolds, does not vanish. An interpretation in terms of Resurgence theory is also given.

How to cite

top

Gelfreich, Vassili, and Sauzin, David. "Borel summation and splitting of separatrices for the Hénon map." Annales de l’institut Fourier 51.2 (2001): 513-567. <http://eudml.org/doc/115924>.

@article{Gelfreich2001,
abstract = {We study two complex invariant manifolds associated with the parabolic fixed point of the area-preserving Hénon map. A single formal power series corresponds to both of them. The Borel transform of the formal series defines an analytic germ. We explore the Riemann surface and singularities of its analytic continuation. In particular we give a complete description of the “first” singularity and prove that a constant, which describes the splitting of the invariant manifolds, does not vanish. An interpretation in terms of Resurgence theory is also given.},
affiliation = {The Steklov Mathematical Institute at St. Petersburg, St. Petersburg (Russie); Institut de Mécanique Céleste, Astronomie et systèmes Dynamiques, 77 avenue Denfert-Rochereau, 75014 Paris (France)},
author = {Gelfreich, Vassili, Sauzin, David},
journal = {Annales de l’institut Fourier},
keywords = {Hénon map; difference equations; splitting of separatrices; Borel summation; Laplace transform; resurgence; quadratic area-preserving map; divergent asymptotic series},
language = {eng},
number = {2},
pages = {513-567},
publisher = {Association des Annales de l'Institut Fourier},
title = {Borel summation and splitting of separatrices for the Hénon map},
url = {http://eudml.org/doc/115924},
volume = {51},
year = {2001},
}

TY - JOUR
AU - Gelfreich, Vassili
AU - Sauzin, David
TI - Borel summation and splitting of separatrices for the Hénon map
JO - Annales de l’institut Fourier
PY - 2001
PB - Association des Annales de l'Institut Fourier
VL - 51
IS - 2
SP - 513
EP - 567
AB - We study two complex invariant manifolds associated with the parabolic fixed point of the area-preserving Hénon map. A single formal power series corresponds to both of them. The Borel transform of the formal series defines an analytic germ. We explore the Riemann surface and singularities of its analytic continuation. In particular we give a complete description of the “first” singularity and prove that a constant, which describes the splitting of the invariant manifolds, does not vanish. An interpretation in terms of Resurgence theory is also given.
LA - eng
KW - Hénon map; difference equations; splitting of separatrices; Borel summation; Laplace transform; resurgence; quadratic area-preserving map; divergent asymptotic series
UR - http://eudml.org/doc/115924
ER -

References

top
  1. C. Bonet, D. Sauzin, T. M. Seara, M. Valéncia, Adiabatic invariant of the harmonic oscillator, complex matching and resurgence, SIAM J. Math. Anal. 29 (1998), 1335-1360 Zbl0913.58019MR1638050
  2. B. Candelpergher, J.C. Nosmas, F. Pham, Approche de la résurgence, (1993), Hermann, Paris Zbl0791.32001MR1250603
  3. V. Chernov, On separatrix splitting of some quadratic area-preserving maps of the plane, Regular & Chaotic Dynamics 3 (1998), 49-65 Zbl0924.58065MR1652168
  4. J. Écalle, Les fonctions résurgentes, vol. 2 (1981), Publ. Math. d'Orsay, Paris Zbl0499.30034
  5. J. Écalle, Six lectures on Transseries, Analysable Functions and the Constructive Proof of Dulac's conjecture, Bifurcations and Periodic Orbits of Vector Field (1993), 75-184, Kluwer Ac. Publishers Zbl0814.32008
  6. E. Fontich, C. Simó, Invariant manifolds for near identity differentiable maps and splitting of separatrices, Ergod. Th. and Dynam. Sys. 10 (1990), 319-346 Zbl0706.58060MR1062761
  7. V.G. Gelfreich, Separatrices splitting for polynomial area-preserving maps, vol. 13 (1991), 108-116, Leningrad State University (Russian) Zbl1160.37381
  8. V.G. Gelfreich, A proof of the exponentially small transversality of the separatrices for the standard map, Comm. Math. Phys. 201 (1999), 155-216 Zbl1042.37044MR1669417
  9. V.G. Gelfreich, Splitting of a small separatrix loop near the saddle-center bifurcation in area-preserving maps, Physica D 136 (2000), 266-279 Zbl0942.37016MR1733057
  10. V. G. Gelfreich, V. F. Lazutkin, N. V. Svanidze, A refined formula for the separatrix splitting for the standard map, Physica D 71 (1994), 82-101 Zbl0812.70017MR1264110
  11. V.G. Gelfreich, V.F. Lazutkin, M.B. Tabanov, Exponentially small splitting in Hamiltonian systems, Chaos 1 (1991), 137-142 Zbl0899.58016MR1135901
  12. V. Hakim, K. Mallick, Exponentially small splittings of separatrices, matching in the complex plane and Borel summation, Nonlinearity 6 (1993), 57-70 Zbl0769.34036MR1203052
  13. V.F. Lazutkin, Splitting of separatrices for the standard map, VINITI (1984) Zbl1120.37039
  14. V.F. Lazutkin, Resurgent approach to the separatrices splitting, Equadiff91, International conference on differential equations, Barcelona 1991 vol. 1 (1993), 163-176, World Scientific Zbl0938.37524
  15. V.F. Lazutkin, I.G. Schachmanski, M.B. Tabanov, Splitting of separatrices for standard and semistandard mappings, Physica D 40 (1989), 235-348 Zbl0825.58033MR1029465
  16. B. Malgrange, Resommation des séries divergentes, Expo. Math. 13 (1995), 163-222 Zbl0836.40004MR1346201
  17. Yu.B. Suris, On the complex separatrices of some standard-like maps, Nonlinearity 7 (1994), 1225-1236 Zbl0813.58024MR1284689
  18. A. Tovbis, Asymptotics beyond all orders and analytic properties of inverse Laplace transforms of solutions, Comm. Math. Phys. 163 (1994), 245-255 Zbl0804.44001MR1284784
  19. A. Tovbis, M. Tsuchiya, C. Jaffe, Exponential asymptotic expansions and approximations of the unstable and stable manifolds of singularly perturbed systems with the Hénon map as an example, Chaos 8 (1998), 665-681 Zbl0987.37022MR1645522

Citations in EuDML Documents

top
  1. Yafei Ou, On the stability by convolution product of a resurgent algebra
  2. Jean-Marc Rasoamanana, Résurgence-sommabilité de séries formelles ramifiées dépendant d’un paramètre et solutions d’équations différentielles linéaires
  3. Carme Olivé, David Sauzin, Tere M. Seara, Resurgence in a Hamilton-Jacobi equation
  4. José Pedro Gaivão, Analytic invariants for the 1 : - 1 resonance
  5. Ovidiu Costin, Stavros Garoufalidis, Resurgence of the Kontsevich-Zagier series

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.