Borel summation and splitting of separatrices for the Hénon map
Vassili Gelfreich[1]; David Sauzin[2]
- [1] The Steklov Mathematical Institute at St. Petersburg, St. Petersburg (Russie)
- [2] Institut de Mécanique Céleste, Astronomie et systèmes Dynamiques, 77 avenue Denfert-Rochereau, 75014 Paris (France)
Annales de l’institut Fourier (2001)
- Volume: 51, Issue: 2, page 513-567
- ISSN: 0373-0956
Access Full Article
topAbstract
topHow to cite
topGelfreich, Vassili, and Sauzin, David. "Borel summation and splitting of separatrices for the Hénon map." Annales de l’institut Fourier 51.2 (2001): 513-567. <http://eudml.org/doc/115924>.
@article{Gelfreich2001,
abstract = {We study two complex invariant manifolds associated with the parabolic fixed point of
the area-preserving Hénon map. A single formal power series corresponds to both of them.
The Borel transform of the formal series defines an analytic germ. We explore the Riemann
surface and singularities of its analytic continuation. In particular we give a complete
description of the “first” singularity and prove that a constant, which describes the
splitting of the invariant manifolds, does not vanish. An interpretation in terms of
Resurgence theory is also given.},
affiliation = {The Steklov Mathematical Institute at St. Petersburg, St. Petersburg (Russie); Institut de Mécanique Céleste, Astronomie et systèmes Dynamiques, 77 avenue Denfert-Rochereau, 75014 Paris (France)},
author = {Gelfreich, Vassili, Sauzin, David},
journal = {Annales de l’institut Fourier},
keywords = {Hénon map; difference equations; splitting of separatrices; Borel summation; Laplace transform; resurgence; quadratic area-preserving map; divergent asymptotic series},
language = {eng},
number = {2},
pages = {513-567},
publisher = {Association des Annales de l'Institut Fourier},
title = {Borel summation and splitting of separatrices for the Hénon map},
url = {http://eudml.org/doc/115924},
volume = {51},
year = {2001},
}
TY - JOUR
AU - Gelfreich, Vassili
AU - Sauzin, David
TI - Borel summation and splitting of separatrices for the Hénon map
JO - Annales de l’institut Fourier
PY - 2001
PB - Association des Annales de l'Institut Fourier
VL - 51
IS - 2
SP - 513
EP - 567
AB - We study two complex invariant manifolds associated with the parabolic fixed point of
the area-preserving Hénon map. A single formal power series corresponds to both of them.
The Borel transform of the formal series defines an analytic germ. We explore the Riemann
surface and singularities of its analytic continuation. In particular we give a complete
description of the “first” singularity and prove that a constant, which describes the
splitting of the invariant manifolds, does not vanish. An interpretation in terms of
Resurgence theory is also given.
LA - eng
KW - Hénon map; difference equations; splitting of separatrices; Borel summation; Laplace transform; resurgence; quadratic area-preserving map; divergent asymptotic series
UR - http://eudml.org/doc/115924
ER -
References
top- C. Bonet, D. Sauzin, T. M. Seara, M. Valéncia, Adiabatic invariant of the harmonic oscillator, complex matching and resurgence, SIAM J. Math. Anal. 29 (1998), 1335-1360 Zbl0913.58019MR1638050
- B. Candelpergher, J.C. Nosmas, F. Pham, Approche de la résurgence, (1993), Hermann, Paris Zbl0791.32001MR1250603
- V. Chernov, On separatrix splitting of some quadratic area-preserving maps of the plane, Regular & Chaotic Dynamics 3 (1998), 49-65 Zbl0924.58065MR1652168
- J. Écalle, Les fonctions résurgentes, vol. 2 (1981), Publ. Math. d'Orsay, Paris Zbl0499.30034
- J. Écalle, Six lectures on Transseries, Analysable Functions and the Constructive Proof of Dulac's conjecture, Bifurcations and Periodic Orbits of Vector Field (1993), 75-184, Kluwer Ac. Publishers Zbl0814.32008
- E. Fontich, C. Simó, Invariant manifolds for near identity differentiable maps and splitting of separatrices, Ergod. Th. and Dynam. Sys. 10 (1990), 319-346 Zbl0706.58060MR1062761
- V.G. Gelfreich, Separatrices splitting for polynomial area-preserving maps, vol. 13 (1991), 108-116, Leningrad State University (Russian) Zbl1160.37381
- V.G. Gelfreich, A proof of the exponentially small transversality of the separatrices for the standard map, Comm. Math. Phys. 201 (1999), 155-216 Zbl1042.37044MR1669417
- V.G. Gelfreich, Splitting of a small separatrix loop near the saddle-center bifurcation in area-preserving maps, Physica D 136 (2000), 266-279 Zbl0942.37016MR1733057
- V. G. Gelfreich, V. F. Lazutkin, N. V. Svanidze, A refined formula for the separatrix splitting for the standard map, Physica D 71 (1994), 82-101 Zbl0812.70017MR1264110
- V.G. Gelfreich, V.F. Lazutkin, M.B. Tabanov, Exponentially small splitting in Hamiltonian systems, Chaos 1 (1991), 137-142 Zbl0899.58016MR1135901
- V. Hakim, K. Mallick, Exponentially small splittings of separatrices, matching in the complex plane and Borel summation, Nonlinearity 6 (1993), 57-70 Zbl0769.34036MR1203052
- V.F. Lazutkin, Splitting of separatrices for the standard map, VINITI (1984) Zbl1120.37039
- V.F. Lazutkin, Resurgent approach to the separatrices splitting, Equadiff91, International conference on differential equations, Barcelona 1991 vol. 1 (1993), 163-176, World Scientific Zbl0938.37524
- V.F. Lazutkin, I.G. Schachmanski, M.B. Tabanov, Splitting of separatrices for standard and semistandard mappings, Physica D 40 (1989), 235-348 Zbl0825.58033MR1029465
- B. Malgrange, Resommation des séries divergentes, Expo. Math. 13 (1995), 163-222 Zbl0836.40004MR1346201
- Yu.B. Suris, On the complex separatrices of some standard-like maps, Nonlinearity 7 (1994), 1225-1236 Zbl0813.58024MR1284689
- A. Tovbis, Asymptotics beyond all orders and analytic properties of inverse Laplace transforms of solutions, Comm. Math. Phys. 163 (1994), 245-255 Zbl0804.44001MR1284784
- A. Tovbis, M. Tsuchiya, C. Jaffe, Exponential asymptotic expansions and approximations of the unstable and stable manifolds of singularly perturbed systems with the Hénon map as an example, Chaos 8 (1998), 665-681 Zbl0987.37022MR1645522
Citations in EuDML Documents
top- Yafei Ou, On the stability by convolution product of a resurgent algebra
- Jean-Marc Rasoamanana, Résurgence-sommabilité de séries formelles ramifiées dépendant d’un paramètre et solutions d’équations différentielles linéaires
- Carme Olivé, David Sauzin, Tere M. Seara, Resurgence in a Hamilton-Jacobi equation
- José Pedro Gaivão, Analytic invariants for the resonance
- Ovidiu Costin, Stavros Garoufalidis, Resurgence of the Kontsevich-Zagier series
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.