Sobolev spaces on multiple cones
P. Auscher[1]; N. Badr[2]
- [1] Paris-Sud, Laboratoire de Mathématiques, UMR 8628, Orsay, F-91405 ; CNRS, Orsay, F-91405
- [2] Université de Lyon; CNRS; Université Lyon 1, Institut Camille Jordan, 43 boulevard du 11 Novembre 1918, F-69622 Villeurbanne Cedex, France
Annales de la faculté des sciences de Toulouse Mathématiques (2010)
- Volume: 19, Issue: 3-4, page 707-733
- ISSN: 0240-2963
Access Full Article
topAbstract
topHow to cite
topAuscher, P., and Badr, N.. "Sobolev spaces on multiple cones." Annales de la faculté des sciences de Toulouse Mathématiques 19.3-4 (2010): 707-733. <http://eudml.org/doc/115878>.
@article{Auscher2010,
abstract = {The purpose of this note is to discuss how various Sobolev spaces defined on multiple cones behave with respect to density of smooth functions, interpolation and extension/restriction to/from $\mathbb\{R\}^n$. The analysis interestingly combines use of Poincaré inequalities and of some Hardy type inequalities.},
affiliation = {Paris-Sud, Laboratoire de Mathématiques, UMR 8628, Orsay, F-91405 ; CNRS, Orsay, F-91405; Université de Lyon; CNRS; Université Lyon 1, Institut Camille Jordan, 43 boulevard du 11 Novembre 1918, F-69622 Villeurbanne Cedex, France},
author = {Auscher, P., Badr, N.},
journal = {Annales de la faculté des sciences de Toulouse Mathématiques},
keywords = {Sobolev spaces defined on multiple cones; Poincaré inequalities; Hardy type inequalities},
language = {eng},
number = {3-4},
pages = {707-733},
publisher = {Université Paul Sabatier, Toulouse},
title = {Sobolev spaces on multiple cones},
url = {http://eudml.org/doc/115878},
volume = {19},
year = {2010},
}
TY - JOUR
AU - Auscher, P.
AU - Badr, N.
TI - Sobolev spaces on multiple cones
JO - Annales de la faculté des sciences de Toulouse Mathématiques
PY - 2010
PB - Université Paul Sabatier, Toulouse
VL - 19
IS - 3-4
SP - 707
EP - 733
AB - The purpose of this note is to discuss how various Sobolev spaces defined on multiple cones behave with respect to density of smooth functions, interpolation and extension/restriction to/from $\mathbb{R}^n$. The analysis interestingly combines use of Poincaré inequalities and of some Hardy type inequalities.
LA - eng
KW - Sobolev spaces defined on multiple cones; Poincaré inequalities; Hardy type inequalities
UR - http://eudml.org/doc/115878
ER -
References
top- Adams (R.).— Sobolev spaces. Pure and Applied Mathematics, Vol. 65. Academic Press, New York-London (1975). Zbl0314.46030MR450957
- Badr (N.).— Ph.D Thesis, Université Paris-Sud (2007).
- Badr (N.).— Real interpolation of Sobolev Spaces, Math. Scand., volume 105, issue 2, p. 235-264 (2009). Zbl1192.46018MR2573547
- Bennett (C.), Sharpley (R.).— Interpolation of operators, Academic Press (1988). Zbl0647.46057MR928802
- Bergh (J.), Löfström (J.).— Interpolation spaces, An introduction, Springer (Berlin) (1976). Zbl0344.46071MR482275
- Chavel (I.).— Eigenvalues in Riemannian geometry. Academic Press (1984). Zbl0551.53001MR768584
- Coifman (R.), Weiss (G.).— Analyse harmonique sur certains espaces homogènes, Lecture notes in Math., Springer (1971). MR499948
- Costabel (M.), Dauge (M.), Nicaise (S.).— Singularities of Maxwell interface problems. M2AN Math. Model. Numer. Anal. 33, no. 3 (1999). Zbl0937.78003MR1713241
- Devore (R.) Scherer (K.).— Interpolation of linear operators on Sobolev spaces, Ann. of Math., 109, p. 583-599 (1979). Zbl0422.46028MR534764
- Evans (L.C.), Gariepy (R. F.).— Measure theory and fine properties of functions. Studies in Advanced Mathematics. CRC Press, Boca Raton, FL. viii+268 pp (1992). Zbl0804.28001MR1158660
- Hajlasz (P.), Koskela (P.).— Sobolev met Poincaré, Mem. Amer. Math. Soc., 145, (688), p. 1-101 (2000). Zbl0954.46022MR1683160
- Hajlasz (P.).— Sobolev spaces on a arbitrary metric space, Potential Anal., 5, p. 403-415 (1996). Zbl0859.46022MR1401074
- Hajlasz (P.), Koskela (P.), Tuominen (H.).— Sobolev embeddings, extensions and measure density condition, J. Funct. Anal., 254, p. 1217-1234 (2008). Zbl1136.46029MR2386936
- Heinonen (J.).— Lectures on analysis on metric spaces, Springer-Verlag (2001). Zbl0985.46008MR1800917
- Michael (J. H), Simon (L. M.).— Sobolev and Mean-Value Inequalities on Generalized Submanifolds of , Comm. Pure and Appl. Math., vol. 3 26, p. 361-379 (1973). Zbl0256.53006MR344978
- Maz’ya (V.).— Sobolev spaces. Springer-Verlag, Berlin. xix+486 pp (1985). Zbl0692.46023MR817985
- Maz’ya (V.), Poborchi (S.).— Differentiable functions on bad domains. World Scientific Publishing Co., Inc., River Edge, NJ (1997). Zbl0918.46033MR1643072
- Rychkov (V.S.), Linear extension operators for restrictions of function spaces to irregular open sets, Studia Math. 140, p. 141-162 (2000). Zbl0972.46018MR1784629
- Semmes (S.), Finding Curves on General Spaces through Quantitative Topology, with Applications to Sobolev and Poincaré Inequalities.Selecta Mathematica, New Series Vol. 2, No. 2, p. 155-295 (1996). Zbl0870.54031MR1414889
- Shvartsman (P.), On extensions of Sobolev functions defined on regular subsets of metric measure spaces. J. Approx. Theory 144, no. 2, p. 139-161 (2007). Zbl1121.46033MR2293385
- Stein (E.M.), Singular integrals and differentiability properties of functions. Princeton Mathematical Series, No. 30 Princeton University Press, Princeton, N.J. (1970). Zbl0207.13501MR290095
- Stein (E. M.), Weiss (G.), Introduction to Fourier Analysis in Euclidean spaces, Princeton University Press (1971). Zbl0232.42007MR304972
- Ziemer (W.), Weakly differentiable functions. Sobolev spaces and functions of bounded variation. Graduate Texts in Mathematics, 120. Springer-Verlag, New York (1989). Zbl0692.46022MR1014685
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.