Sobolev spaces on multiple cones

P. Auscher[1]; N. Badr[2]

  • [1] Paris-Sud, Laboratoire de Mathématiques, UMR 8628, Orsay, F-91405 ; CNRS, Orsay, F-91405
  • [2] Université de Lyon; CNRS; Université Lyon 1, Institut Camille Jordan, 43 boulevard du 11 Novembre 1918, F-69622 Villeurbanne Cedex, France

Annales de la faculté des sciences de Toulouse Mathématiques (2010)

  • Volume: 19, Issue: 3-4, page 707-733
  • ISSN: 0240-2963

Abstract

top
The purpose of this note is to discuss how various Sobolev spaces defined on multiple cones behave with respect to density of smooth functions, interpolation and extension/restriction to/from n . The analysis interestingly combines use of Poincaré inequalities and of some Hardy type inequalities.

How to cite

top

Auscher, P., and Badr, N.. "Sobolev spaces on multiple cones." Annales de la faculté des sciences de Toulouse Mathématiques 19.3-4 (2010): 707-733. <http://eudml.org/doc/115878>.

@article{Auscher2010,
abstract = {The purpose of this note is to discuss how various Sobolev spaces defined on multiple cones behave with respect to density of smooth functions, interpolation and extension/restriction to/from $\mathbb\{R\}^n$. The analysis interestingly combines use of Poincaré inequalities and of some Hardy type inequalities.},
affiliation = {Paris-Sud, Laboratoire de Mathématiques, UMR 8628, Orsay, F-91405 ; CNRS, Orsay, F-91405; Université de Lyon; CNRS; Université Lyon 1, Institut Camille Jordan, 43 boulevard du 11 Novembre 1918, F-69622 Villeurbanne Cedex, France},
author = {Auscher, P., Badr, N.},
journal = {Annales de la faculté des sciences de Toulouse Mathématiques},
keywords = {Sobolev spaces defined on multiple cones; Poincaré inequalities; Hardy type inequalities},
language = {eng},
number = {3-4},
pages = {707-733},
publisher = {Université Paul Sabatier, Toulouse},
title = {Sobolev spaces on multiple cones},
url = {http://eudml.org/doc/115878},
volume = {19},
year = {2010},
}

TY - JOUR
AU - Auscher, P.
AU - Badr, N.
TI - Sobolev spaces on multiple cones
JO - Annales de la faculté des sciences de Toulouse Mathématiques
PY - 2010
PB - Université Paul Sabatier, Toulouse
VL - 19
IS - 3-4
SP - 707
EP - 733
AB - The purpose of this note is to discuss how various Sobolev spaces defined on multiple cones behave with respect to density of smooth functions, interpolation and extension/restriction to/from $\mathbb{R}^n$. The analysis interestingly combines use of Poincaré inequalities and of some Hardy type inequalities.
LA - eng
KW - Sobolev spaces defined on multiple cones; Poincaré inequalities; Hardy type inequalities
UR - http://eudml.org/doc/115878
ER -

References

top
  1. Adams (R.).— Sobolev spaces. Pure and Applied Mathematics, Vol. 65. Academic Press, New York-London (1975). Zbl0314.46030MR450957
  2. Badr (N.).— Ph.D Thesis, Université Paris-Sud (2007). 
  3. Badr (N.).— Real interpolation of Sobolev Spaces, Math. Scand., volume 105, issue 2, p. 235-264 (2009). Zbl1192.46018MR2573547
  4. Bennett (C.), Sharpley (R.).— Interpolation of operators, Academic Press (1988). Zbl0647.46057MR928802
  5. Bergh (J.), Löfström (J.).— Interpolation spaces, An introduction, Springer (Berlin) (1976). Zbl0344.46071MR482275
  6. Chavel (I.).— Eigenvalues in Riemannian geometry. Academic Press (1984). Zbl0551.53001MR768584
  7. Coifman (R.), Weiss (G.).— Analyse harmonique sur certains espaces homogènes, Lecture notes in Math., Springer (1971). MR499948
  8. Costabel (M.), Dauge (M.), Nicaise (S.).— Singularities of Maxwell interface problems. M2AN Math. Model. Numer. Anal. 33, no. 3 (1999). Zbl0937.78003MR1713241
  9. Devore (R.) Scherer (K.).— Interpolation of linear operators on Sobolev spaces, Ann. of Math., 109, p. 583-599 (1979). Zbl0422.46028MR534764
  10. Evans (L.C.), Gariepy (R. F.).— Measure theory and fine properties of functions. Studies in Advanced Mathematics. CRC Press, Boca Raton, FL. viii+268 pp (1992). Zbl0804.28001MR1158660
  11. Hajlasz (P.), Koskela (P.).— Sobolev met Poincaré, Mem. Amer. Math. Soc., 145, (688), p. 1-101 (2000). Zbl0954.46022MR1683160
  12. Hajlasz (P.).— Sobolev spaces on a arbitrary metric space, Potential Anal., 5, p. 403-415 (1996). Zbl0859.46022MR1401074
  13. Hajlasz (P.), Koskela (P.), Tuominen (H.).— Sobolev embeddings, extensions and measure density condition, J. Funct. Anal., 254, p. 1217-1234 (2008). Zbl1136.46029MR2386936
  14. Heinonen (J.).— Lectures on analysis on metric spaces, Springer-Verlag (2001). Zbl0985.46008MR1800917
  15. Michael (J. H), Simon (L. M.).— Sobolev and Mean-Value Inequalities on Generalized Submanifolds of n , Comm. Pure and Appl. Math., vol. 3 26, p. 361-379 (1973). Zbl0256.53006MR344978
  16. Maz’ya (V.).— Sobolev spaces. Springer-Verlag, Berlin. xix+486 pp (1985). Zbl0692.46023MR817985
  17. Maz’ya (V.), Poborchi (S.).— Differentiable functions on bad domains. World Scientific Publishing Co., Inc., River Edge, NJ (1997). Zbl0918.46033MR1643072
  18. Rychkov (V.S.), Linear extension operators for restrictions of function spaces to irregular open sets, Studia Math. 140, p. 141-162 (2000). Zbl0972.46018MR1784629
  19. Semmes (S.), Finding Curves on General Spaces through Quantitative Topology, with Applications to Sobolev and Poincaré Inequalities.Selecta Mathematica, New Series Vol. 2, No. 2, p. 155-295 (1996). Zbl0870.54031MR1414889
  20. Shvartsman (P.), On extensions of Sobolev functions defined on regular subsets of metric measure spaces. J. Approx. Theory 144, no. 2, p. 139-161 (2007). Zbl1121.46033MR2293385
  21. Stein (E.M.), Singular integrals and differentiability properties of functions. Princeton Mathematical Series, No. 30 Princeton University Press, Princeton, N.J. (1970). Zbl0207.13501MR290095
  22. Stein (E. M.), Weiss (G.), Introduction to Fourier Analysis in Euclidean spaces, Princeton University Press (1971). Zbl0232.42007MR304972
  23. Ziemer (W.), Weakly differentiable functions. Sobolev spaces and functions of bounded variation. Graduate Texts in Mathematics, 120. Springer-Verlag, New York (1989). Zbl0692.46022MR1014685

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.