Linear extension operators for restrictions of function spaces to irregular open sets

V. Rychkov

Studia Mathematica (2000)

  • Volume: 140, Issue: 2, page 141-162
  • ISSN: 0039-3223

How to cite

top

Rychkov, V.. "Linear extension operators for restrictions of function spaces to irregular open sets." Studia Mathematica 140.2 (2000): 141-162. <http://eudml.org/doc/216759>.

@article{Rychkov2000,
abstract = {},
author = {Rychkov, V.},
journal = {Studia Mathematica},
keywords = {Sobolev spaces; Besov-Triebel-Lizorkin spaces; restrictions; extension operators; irregular domains; Hausdorff content; local polynomial approximation; complemented subspaces; Besov spaces; Triebel-Lizorkin spaces},
language = {eng},
number = {2},
pages = {141-162},
title = {Linear extension operators for restrictions of function spaces to irregular open sets},
url = {http://eudml.org/doc/216759},
volume = {140},
year = {2000},
}

TY - JOUR
AU - Rychkov, V.
TI - Linear extension operators for restrictions of function spaces to irregular open sets
JO - Studia Mathematica
PY - 2000
VL - 140
IS - 2
SP - 141
EP - 162
AB -
LA - eng
KW - Sobolev spaces; Besov-Triebel-Lizorkin spaces; restrictions; extension operators; irregular domains; Hausdorff content; local polynomial approximation; complemented subspaces; Besov spaces; Triebel-Lizorkin spaces
UR - http://eudml.org/doc/216759
ER -

References

top
  1. [1] D. R. Adams, The classification problem for the capacities associated with the Besov and Triebel-Lizorkin spaces, in: Approximation and Function Spaces, Banach Center Publ. 22, PWN-Polish Sci. Publ., Warszawa, 1989, 9-24. 
  2. [2] D. R. Adams and L. I. Hedberg, Function Spaces and Potential Theory, Grundlehren Math. Wiss. 314, Springer, Berlin, 1996. 
  3. [3] Yu. A. Brudnyĭ, Spaces defined by means of local approximation, Trudy Moskov. Mat. Obshch. 24 (1971), 69-132 (in Russian). 
  4. [4] H.-Q. Bui, M. Paluszyński, and M. H. Taibleson, A maximal function characterization of weighted Besov-Lipschitz and Triebel-Lizorkin spaces, Studia Math. 119 (1996), 219-246. Zbl0861.42009
  5. [5] P. Bylund, Besov spaces and measures on arbitrary closed sets, Univ. of Umeå, Dept. of Math., Doctoral Thesis No 8, 1994. Zbl0860.46021
  6. [6] J. R. Dorronsoro, On the differentiability of Lipschitz-Besov functions, Trans. Amer. Math. Soc. 303 (1987), 229-240. Zbl0644.46027
  7. [7] C. Fefferman and E. M. Stein, Some maximal inequalities, Amer. J. Math. 93 (1971), 107-115. Zbl0222.26019
  8. [8] M. Frazier and B. Jawerth, Decomposition of Besov spaces, Indiana Univ. Math. J. 34 (1985), 777-799. Zbl0551.46018
  9. [9] M. Frazier and B. Jawerth, A discrete transform and decompositions of distribution spaces, J. Funct. Anal. 93 (1990), 34-170. Zbl0716.46031
  10. [11] O. Frostman, Potentiel d'équilibre et capacité des ensembles avec quelques applications à la théorie des fonctions, Medd. Lunds Univ. Mat. Sem. 3 (1935), 1-118. Zbl61.1262.02
  11. [12] P. W. Jones, Quasiconformal mappings and extendability of functions in Sobolev spaces, Acta Math. 147 (1981), 71-88. Zbl0489.30017
  12. [13] A. Jonsson, Besov spaces on closed sets by means of atomic decompositions, Univ. of Umeå, Dept. of Math., Research Report No 7, 1993. Zbl0831.46028
  13. [14] A. Jonsson and H. Wallin, Function Spaces on Subsets of n , Math. Reports 2, Part 1, Harwood, New York, 1984. Zbl0875.46003
  14. [15] G. A. Kalyabin, The intrinsic norming of the retractions of Sobolev spaces onto plain domains with the points of sharpness, in: Abstracts of Conference on Functional Spaces, Approximation Theory, Nonlinear Analysis in Honor of S. M. Nikol'ski(Moscow, 1995), p. 330 (in Russian). 
  15. [16] Yu. V. Netrusov, Sets of singularities of functions in spaces of Besov and Lizorkin-Triebel type, Trudy Mat. Inst. Steklov. 187 (1989), 162-177 (in Russian); English transl.: Proc. Steklov Inst. Math. 187 (1990), 185-203. 
  16. [17] J. Peetre, On spaces of Triebel-Lizorkin type, Ark. Mat. 13 (1975), 123-130. Zbl0302.46021
  17. [18] C. A. Rogers, Hausdorff Measures, Cambridge Univ. Press, Cambridge, 1970. 
  18. [19] V. S. Rychkov, On a theorem of Bui, Paluszyński, and Taibleson, Trudy Mat. Inst. Steklov. (to appear). 
  19. [20] A. Seeger, A note on Triebel-Lizorkin spaces, in: Approximation and Function Spaces, Banach Center Publ. 22, PWN-Polish Sci. Publ., Warszawa, 1989, 391-400. 
  20. [21] P. A. Shvartsman, Extension theorems with preservation of local polynomial approximations, Yaroslavl Univ., 1986; VINITI Publ. 8.08.1986, No. 6457 (in Russian). 
  21. [22] E. M. Stein and G. Weiss, Introduction to Fourier Analysis on Euclidean Spaces, Princeton Univ. Press, Princeton, NJ, 1971. Zbl0232.42007
  22. [23] R. Strichartz, Multipliers on fractional Sobolev spaces, J. Math. Mech. 16 (1967), 1031-1060. Zbl0145.38301
  23. [24] H. Triebel, Theory of Function Spaces, Monogr. Math. 78, Birkhäuser, Basel, 1983. 
  24. [25] H. Triebel, Theory of Function Spaces II, Monogr. Math. 84, Birkhäuser, Basel, 1992. 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.