On -rings that are not formally real
- [1] Louisiana State University, Baton Rouge
Annales de la faculté des sciences de Toulouse Mathématiques (2010)
- Volume: 19, Issue: S1, page 143-157
- ISSN: 0240-2963
Access Full Article
topAbstract
topHow to cite
topReferences
top- D. F. Anderson and J. Ohm, Valuations and semi-valuations of graded domains, Math. Ann. 256(1981), 145–156. Zbl0442.13002MR620705
- Bigard, Keimel and Wolfenstein, Groupes et anneaux reticulés, Lecture Notes in Mathematics 608. Springer-Verlag, Berlin, 1971. Zbl0384.06022
- G. Birkhoff and R. Pierce, Lattice ordered rings, Anais Acad. Bras. Ci.28 (1956), 41–69. Zbl0070.26602MR80099
- G. Brumfiel, Partially Ordered Rings and Semi-Algebraic Geometry. London Math. Soc. Lecture Note Series 37, Cambridge, 1979. Zbl0415.13015MR553280
- C. N. Delzell and J. Madden, Lattice-ordered rings and semialgebraic geometry: I, Real analytic and Algebraic Geometry. Proc. Intenat. Conf., Trento, Italy, September 21–25, 1992, F. Broglia , M. Galbiati, A. Tognoli, eds., Walter de Gruyter (1995), 103–29. Zbl0846.14034MR1320313
- K. Evans, M. Konikoff, R. Mathis, J. Madden and G. Whipple, Totally ordered commutative monoids, Semigroup Forum 62 (2001), 249–278. Zbl0974.06009MR1831511
- M. Henriksen and J. Isbell, Lattice ordered rings and function rings, Pacific J. Math. 12 (1962), 533–66. Zbl0111.04302MR153709
- Ya. V. Hion, Rings normed by the aid of semigroups. Izv. Akad. Nauk SSSR. Ser. Mat.21(1957), 311–328. (Russian) MR 19 (1958), p. 530. MR88502
- J. Isbell, Notes on ordered rings, Algeb ra Universalis1 (1972), 393–399. Zbl0238.06013MR295994
- J. Madden, Pierce-Birkhoff rings. Arch. der Math. 53 (1989), 565–70. Zbl0691.14012MR1023972
- N. Schwartz and J. Madden, Semi-algebraic Function Rings and Reflectors of Partially Ordered Rings. Lecture Notes in Mathematics, 1712. Springer-Verlag, Berlin, 1999. Zbl0967.14038MR1719673
- B. Sturmfels, Gröbner bases and convex polytopes, AMS, Providence, RI, 1996. Zbl0856.13020MR1363949