-Rings and -Porings
- [1] Fakultät für Informatik und Mathematik, Universität Passau, Postfach 2540, 94030 Passau, Germany
Annales de la faculté des sciences de Toulouse Mathématiques (2010)
- Volume: 19, Issue: S1, page 159-202
- ISSN: 0240-2963
Access Full Article
topAbstract
topHow to cite
topSchwartz, Niels. "$SV$-Rings and $SV$-Porings." Annales de la faculté des sciences de Toulouse Mathématiques 19.S1 (2010): 159-202. <http://eudml.org/doc/115895>.
@article{Schwartz2010,
abstract = {$SV$-rings are commutative rings whose factor rings modulo prime ideals are valuation rings. $SV$-rings occur most naturally in connection with partially ordered rings (= porings) and have been studied only in this context so far. The present note first develops the theory of $SV$-rings systematically, without assuming the presence of a partial order. Particular attention is paid to the question of axiomatizability (in the sense of model theory). Partially ordered $SV$-rings ($SV$-porings) are introduced, and some elementary properties are exhibited. Finally, $SV$-rings are used to study convex subrings and convex extensions of porings, in particular of real closed rings.},
affiliation = {Fakultät für Informatik und Mathematik, Universität Passau, Postfach 2540, 94030 Passau, Germany},
author = {Schwartz, Niels},
journal = {Annales de la faculté des sciences de Toulouse Mathématiques},
keywords = {SV-rings; axiomatizability; convex subrings; real closed rings; partially ordered rings},
language = {eng},
month = {4},
number = {S1},
pages = {159-202},
publisher = {Université Paul Sabatier, Toulouse},
title = {$SV$-Rings and $SV$-Porings},
url = {http://eudml.org/doc/115895},
volume = {19},
year = {2010},
}
TY - JOUR
AU - Schwartz, Niels
TI - $SV$-Rings and $SV$-Porings
JO - Annales de la faculté des sciences de Toulouse Mathématiques
DA - 2010/4//
PB - Université Paul Sabatier, Toulouse
VL - 19
IS - S1
SP - 159
EP - 202
AB - $SV$-rings are commutative rings whose factor rings modulo prime ideals are valuation rings. $SV$-rings occur most naturally in connection with partially ordered rings (= porings) and have been studied only in this context so far. The present note first develops the theory of $SV$-rings systematically, without assuming the presence of a partial order. Particular attention is paid to the question of axiomatizability (in the sense of model theory). Partially ordered $SV$-rings ($SV$-porings) are introduced, and some elementary properties are exhibited. Finally, $SV$-rings are used to study convex subrings and convex extensions of porings, in particular of real closed rings.
LA - eng
KW - SV-rings; axiomatizability; convex subrings; real closed rings; partially ordered rings
UR - http://eudml.org/doc/115895
ER -
References
top- Brumfiel (G.W.).— Partially Ordered Rings and Semi-Algebraic Geometry. London Math. Soc. Lecture Note Series, vol. 37, Camb. Univ. Press, Cambridge (1979). Zbl0415.13015
- Carral (M.), Coste (M.).— Normal spectral spaces and their dimensions. J. Pure Applied Alg. 30, p. 227-235 (1983). Zbl0525.14015
- Chang (C.C.), Keisler (H.J.).— Model Theory. 2nd edition. North Holland, Amsterdam (1977).
- Cherlin (G.), Dickmann (M.A.).— Real closed rings II. Model theory. Annals Pure Applied Logic 25, p. 213-231 (1983). Zbl0538.03028
- Cherlin (G.), Dickmann (M.A.).— Real closed rings I. Residue rings of rings of continuous functions. Fund. Math. 126, p. 147-183 (1986). Zbl0605.54014
- Delfs (H.), Knebusch (M.).— Semialgebraic Topology over a Real Closed Field II – Basic Theory of Semialgebraic Spaces. Math. Z. 178, p. 175-213 (1981). Zbl0447.14003
- Engler (A.J.), Prestel (A.).— Valued Fields. Springer-Verlag, Berlin Heidelberg (2005).
- Gillman (L.), Jerison (M.).— Rings of Continuous Functions. Graduate Texts in Maths., Vol. 43, Springer, Berlin (1976). Zbl0339.46018
- Gilmer (R.).— Multiplicative Ideal Theory. Marcel Dekker, New York (1972). Zbl0248.13001
- Glaz (S.).— Commutative Coherent Rings. Lecture Notes in Maths., vol. 1371, Springer-Verlag, Berlin (1989). Zbl0745.13004
- Henriksen (M.), Isbell (J.R.), Johnson (D.G.).— Residue class fields of latticeordered algebras. Fund. Math. 50, p. 73-94 (1961).
- Henriksen (M.), Jerison (M.).— The space of minimal prime ideals of a commutative ring. Trans. AMS 115, p. 110-130 (1965). Zbl0147.29105
- Henriksen (M.), Larson (S.).— Semiprime -rings that are subdirect products of valuation domains. In: Ordered Algebraic Structures (Eds. J. Martinez, W.C. Holland), Kluwer, Dordrecht, p. 159-168 (1993). Zbl0799.06031
- Henriksen (M.), Larson (S.), Martinez (J.), Woods (G.R.).— Lattice-ordered algebras that are subdirect products of valuation domains. Trans. Amer. Math. Soc. 345, p. 193-221 (1994). Zbl0817.06014
- Henriksen (M.), Wilson.— When is a valuation ring for every prime ideal P? Topology and its Applications 44, p. 175-180 (1992). Zbl0801.54014
- Henriksen (M.), Wilson.— Almost discrete -spaces. Topology and its Applications 46, p. 89-97 (1992). Zbl0791.54049
- Hochster (M.).— Prime ideal structure in commutative rings. Trans Amer. Math. Soc. 142, p. 43-60 (1969). Zbl0184.29401
- Hodges (W.).— Model Theory. Encyclopedia of Mathematics and its Applications, vol. 42, Cambridge Univ. Press, Cambridge (1993). Zbl0789.03031
- Johnstone (P.).— Stone Spaces. Cambridge Univ. Press, Cambridge (1982). Zbl0499.54001
- Knebusch (M.), Scheiderer (C.).— Einführung in die reelle Algebra. Vieweg, Braunschweig (1989).
- Knebusch (M.), Zhang (D.).— Manis valuations and Prüferextensions I – A new chapter in commutative algebra. Lecture Notes in Math., vol 1791, Springer, Berlin (2002).
- Knebusch (M.), Zhang (D.).— Convexity, Valuations and PrüferExtensions in Real Algebra. Documenta Math. 10, p. 1-109 (2005).
- Larson (S.).— Convexity conditions on -rings. Can. J. Math. 38, p. 48-64 (1986). Zbl0588.06011
- Larson (S.).— Constructing rings of continuous functions in which there are many maximal ideals with nontrivial rank. Comm. Alg. 31, p. 2183-2206 (2003). Zbl1024.54015
- Larson (S.).— Images and Open Subspaces of -Spaces. Preprint 2007.
- Matsumura (H.).— Commutative Algebra. 2nd Ed. Benjamin/Cummings, Reading, Massachusetts 1980. Zbl0441.13001
- Prestel (A.), Schwartz (N.).— Model theory of real closed rings. In: Fields Institute Communications, vol. 32 (Eds. F.-V. Kuhlmann et al.), American Mathematical Society, Providence, p. 261-290 ( 2002). Zbl1018.12009
- Sch¨ulting (H.W.).— On real places of a field and their holomorphy ring. Comm. Alg. 10, p. 1239-1284 (1982). Zbl0509.14026
- Schwartz (N.).— Real Closed Rings. In: Algebra and Order (Ed. S. Wolfenstein), Heldermann Verlag, Berlin, p. 175-194 (1986).
- Schwartz (N.).— The basic theory of real closed spaces. Memoirs Amer. Math. Soc. No. 397, Amer. Math. Soc., Providence (1989).
- Schwartz (N.).— Eine universelle Eigenschaft reell abgeschlossener Räume. Comm. Alg. 18, p. 755-774 (1990). Zbl0726.14036
- Schwartz (N.).— Rings of continuous functions as real closed rings. In: Ordered Algebraic Structures (Eds. W.C. Holland, J. Martinez), Kluwer, Dordrecht, p. 277-313 (1997). Zbl0885.46024
- Schwartz (N.).— Epimorphic extensions and Prüfer extensions of partially ordered rings. Manuscripta mathematica 102, p. 347-381 (2000). Zbl0966.13018
- Schwartz (N.).— Convex subrings of partially ordered rings. To appear: Math. Nachr. Zbl1196.13015
- Schwartz (N.).— Real closed valuation rings. Comm. in Alg. 37, p. 3796-3814 (2009). Zbl1184.13072
- Schwartz (N.), Madden (J.J.).— Semi-algebraic Function Rings and Reflectors of Partially Ordered Rings. Lecture Notes in Mathematics, Vol. 1712, Springer-Verlag, Berlin (1999). Zbl0967.14038
- Schwartz (N.), Tressl (M.).— Elementary properties of minimal and maximal points in Zariski spectra., Journal of Algebra 323, p. 698-728 (2010). Zbl1198.13023
- Walker (R.C.).— The Stone-Cech Compactification. Springer, Berlin (1974). Zbl0292.54001
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.