Local Borcherds products

Jan Hendrik Bruinier[1]; Eberhard Freitag[1]

  • [1] Universität Heidelberg, Mathematisches Institut, Im Neuenheimer Feld 288, 69120 Heidelberg (Allemagne)

Annales de l’institut Fourier (2001)

  • Volume: 51, Issue: 1, page 1-26
  • ISSN: 0373-0956

Abstract

top
The local Picard group at a generic point of the one-dimensional Baily-Borel boundary of a Hermitean symmetric quotient of type O ( 2 , n ) is computed. The main ingredient is a local version of Borcherds’ automorphic products. The local obstructions for a Heegner divisor to be principal are given by certain theta series with harmonic coefficients. Sometimes they generate Borcherds’ space of global obstructions. In these particular cases we obtain a simple proof of a result due to the first author: Suppose that Γ O ( 2 , n ) is the orthogonal group attached to an even unimodular lattice. Then every meromorphic modular form for Γ , whose zeros and poles lie on Heegner divisors, is given by a Borcherds product.

How to cite

top

Bruinier, Jan Hendrik, and Freitag, Eberhard. "Local Borcherds products." Annales de l’institut Fourier 51.1 (2001): 1-26. <http://eudml.org/doc/115908>.

@article{Bruinier2001,
abstract = {The local Picard group at a generic point of the one-dimensional Baily-Borel boundary of a Hermitean symmetric quotient of type $\{\rm O\}(2,n)$ is computed. The main ingredient is a local version of Borcherds’ automorphic products. The local obstructions for a Heegner divisor to be principal are given by certain theta series with harmonic coefficients. Sometimes they generate Borcherds’ space of global obstructions. In these particular cases we obtain a simple proof of a result due to the first author: Suppose that $\Gamma \subset \{\rm O\}(2,n)$ is the orthogonal group attached to an even unimodular lattice. Then every meromorphic modular form for $\Gamma $, whose zeros and poles lie on Heegner divisors, is given by a Borcherds product.},
affiliation = {Universität Heidelberg, Mathematisches Institut, Im Neuenheimer Feld 288, 69120 Heidelberg (Allemagne); Universität Heidelberg, Mathematisches Institut, Im Neuenheimer Feld 288, 69120 Heidelberg (Allemagne)},
author = {Bruinier, Jan Hendrik, Freitag, Eberhard},
journal = {Annales de l’institut Fourier},
keywords = {automorphic forms; automorphic product; orthogonal group; Heegner divisor; local Picard group; Automorphic forms; automorphic products; orthogonal groups; Heegner divisors; local Picard groups},
language = {eng},
number = {1},
pages = {1-26},
publisher = {Association des Annales de l'Institut Fourier},
title = {Local Borcherds products},
url = {http://eudml.org/doc/115908},
volume = {51},
year = {2001},
}

TY - JOUR
AU - Bruinier, Jan Hendrik
AU - Freitag, Eberhard
TI - Local Borcherds products
JO - Annales de l’institut Fourier
PY - 2001
PB - Association des Annales de l'Institut Fourier
VL - 51
IS - 1
SP - 1
EP - 26
AB - The local Picard group at a generic point of the one-dimensional Baily-Borel boundary of a Hermitean symmetric quotient of type ${\rm O}(2,n)$ is computed. The main ingredient is a local version of Borcherds’ automorphic products. The local obstructions for a Heegner divisor to be principal are given by certain theta series with harmonic coefficients. Sometimes they generate Borcherds’ space of global obstructions. In these particular cases we obtain a simple proof of a result due to the first author: Suppose that $\Gamma \subset {\rm O}(2,n)$ is the orthogonal group attached to an even unimodular lattice. Then every meromorphic modular form for $\Gamma $, whose zeros and poles lie on Heegner divisors, is given by a Borcherds product.
LA - eng
KW - automorphic forms; automorphic product; orthogonal group; Heegner divisor; local Picard group; Automorphic forms; automorphic products; orthogonal groups; Heegner divisors; local Picard groups
UR - http://eudml.org/doc/115908
ER -

References

top
  1. L. Ballweg, Die lokalen Cohomologiegruppen der Baily-Borel-Kompaktifizierung in generischen Randpunkten, (1992) 
  2. R. E. Borcherds, Automorphic forms with singularities on Grassmannians, Invent. Math 132 (1998), 491-562 Zbl0919.11036MR1625724
  3. R. E. Borcherds, The Gross-Kohnen-Zagier theorem in higher dimensions, Duke Math. J 97 (1999), 219-233 Zbl0967.11022MR1682249
  4. J. H. Bruinier, Borcherds products on O ( 2 , l ) and Chern classes of Heegner divisors, (January 2000) Zbl1004.11021
  5. J. H. Bruinier, Borcherds products and Chern classes of Hirzebruch-Zagier divisors, Invent. Math 138 (1999), 51-83 Zbl1011.11027MR1714336
  6. H. Cartan, Fonctions automorphes, Séminaire, Paris No. 10 (1957/58) Zbl0112.31303
  7. M. Eichler, D. Zagier, The Theory of Jacobi Forms, 55 (1985), Birkhäuser Zbl0554.10018MR781735
  8. E. Freitag, Siegelsche Modulfunktionen, (1983), Springer-Verlag Zbl0498.10016MR871067
  9. E. Freitag, Hilbert Modular Forms, (1990), Springer-Verlag Zbl0702.11029MR1050763
  10. H. Grauert, R. Remmert, Plurisubharmonische Funktionen in komplexen Räumen, Math. Zeitschr 65 (1956), 175-194 Zbl0070.30403MR81960
  11. A. Nobs, Die irreduziblen Darstellungen der Gruppen S L 2 ( p ) , insbesondere S L 2 ( 2 ) . I. Teil, Comment Math. Helvetici 51 (1976), 465-489 Zbl0346.20022MR444787
  12. G. Shimura, Introduction to the Arithmetic Theory of Automorphic Functions, (1971), Princeton University Press Zbl0221.10029MR314766
  13. J.-L. Waldspurger, Engendrement par des séries thêta de certains espaces de formes modulaires, Invent. Math. 50 (1979), 135-168 Zbl0393.10025MR517775
  14. G. L. Watson, Integral quadratic forms, (1960), Cambridge University Press Zbl0090.03103MR118704

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.